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Kurzfassung

Bifurkationsanalyse und Parameterschätzung von niedrigdimensionalen Modellen

globaler Mensch-Natur Koevolution

Die vorliegende Arbeit hat zum Ziel die koevolutionäre Dynamik von Menschen und Natur

in der Epoche des Holozäns und des Anthropozäns zu untersuchen. Dazu wird ein niedrigdi-

mensionales deterministisches Model verwendet, welches die zeitliche Entwicklung von global

aggregierten Hauptobservablen des Erdsystems beschreibt. Während die natürliche Kom-

ponente des Erdsystems durch den globalen Kohlenstoffkreislauf repräsentiert wird, ist die

sozio-ökonomische Dynamik durch eine Kombination eines etablierten Wachstumsmodells

mit der Nutzung verschiedener Energieformen sowie die menschliche Populationsdynamik

gegeben. Die gleichmäßige Gewichtung der natürlichen und menschlichen Sphären sowie die

geringe dimensionale Komplexität, die ein qualitatives Verständnis ermöglicht, unterscheiden

das Modell von anderen Ansätzen der Erdsystemmodellierung. Die Formulierung des Modells

als dynamisches System ermöglicht zudem die Anwendung mathematischer Standardmethoden

wie zum Beispiel der Bifurkationsanalyse.

Diverse Untermodelle wurden hergeleitet, welche verschiedene sozio-kulturelle Zeitalter der

Menschheitsgeschichte widerspiegeln, wie zum Beispiel Jäger-Sammler-, Agrar- oder Indus-

triegesellschaften. Für jedes dieser Szenarien wurde das qualitative asymptotische Verhalten

des Systems charakterisiert, indem mögliche Gleichgewichtszustände und Attraktoren identi-

fiziert wurden und der qualitative Einfluss verschiedener Parameter mittels Bifurkationsanalyse

untersucht wurde. Für das Agrar- und Industrieszenario hat sich die generelle Unterscheidung

zwischen einem nachhaltigen und einem kollabierenden Regime herausgestellt, was ein verbrei-

tetes Merkmal sozio-ökologischer System darstellt. Ein weiteres dynamisches Regime, welche

stabile Oszillationen aufweist, wurde für das Agrarszenario identifiziert.

Die meisten der Modellparameter konnten anhand verfügbarer empirischer Daten abgeschätzt

werden, wodurch der relevante Parameterbereich eingeschränkt werden konnte und zudem

charakteristische Größen mit unabhängigen Kalkulationen verglichen werden konnten. Somit

konnte die planetare Belastungskapazität für landwirtschaftliche Bevölkerungen abgeschätzt

werden und mit tatsächlichen Bevölkerungszahlen der Vergangenheit verglichen werden. Diese

und weitere Vergleichen mit unabhängigen Daten dienen dazu Teile des Modells zu validieren

und gleichzeitig weniger genaue Teile zu identifizieren, die in zukünftigen Modellversionen

verbessert werden könnten.

Letztlich tragen die durch den koevolutionären Modellierungsansatz erzielten Ergebnisse zu

einem besseren Verständnis der gesamten Erdsystemdynamik im Holozän und Anthropozän

bei.



Abstract

Bifurcation analysis and parameter estimation in low-dimensional models of

global human-nature coevolution

The intent of the present thesis is to investigate the coevolutionary dynamics of humans and

nature during the Holocene and Anthropocene epochs. For this purpose a low-dimensional

deterministic model is employed which describes the temporal evolution of globally aggregated

key observables of the Earth system. While the natural component of the Earth system is

represented via the global carbon cycle, the socio-economic dynamics are described by an

established economic growth model combined with the use of different energy forms and

human population dynamics. The balanced representation of the natural and human spheres

and the low dimensional complexity which enables a qualitative understanding, distinguish

the model from other Earth system modeling approaches. The formulation of the model as a

dynamical system in addition allows the application of established mathematical methods such

as bifurcation analysis.

Several sub-models have been derived which correspond to different socio-cultural eras of

human history such as hunter-gatherer, agricultural or industrial societies. For each of these

scenarios the asymptotic behavior of the dynamics was characterized by identifying the possible

equilibrium states and attractors and investigating the influence of the model parameters

through bifurcation analyses. For the agricultural and industrial model versions a general

distinction between a sustainable and a collapse regime emerged which is a common feature

of social-ecological systems. Another dynamic regime which features stable oscillations, was

found for the agricultural scenario.

Most of the model parameters have been estimated on the basis of available real-world data

in order to curtail the relevant parameter regime and to be able to compare characteristic

quantities of the system to estimates gained by different means. Hence, the planetary carrying

capacity of agricultural populations could be estimated and compared to actual population

levels of the past. This and other comparisons to independent quantitative estimates were used

to validate parts of the model and to identify less accurate parts which might be improved in

further model versions.

Ultimately the results gained by the coevolutionary modeling approach contribute to a

better understanding of the dynamics of the whole Earth system in the Holocene and the

Anthropocene.
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CHAPTER 1

Introduction

The Holocene constitutes the most recent geological epoch within the geologic time scale

of Earth’s history. The interglacial period whose onset is dated about 11700 years before

present, is characterized by remarkably stable climatic and ecological conditions. Amongst

other factors these are hypothesized to have facilitated the advent of human settlements and

major civilizations in general [28]. Thereby the Holocene period encompasses a series of

local and global socio-cultural revolutions from the neolithic revolution through several other

agricultural revolutions and the industrial revolution to the proposed Great Acceleration [92].

At the same time it witnessed the rise and fall of major regional civilizations [25] while the

global human population was more or less steadily increasing [52].

The observation that the accumulated impacts of human activities affected natural processes

on a planetary scale led to the proclamation of an entirely new geological epoch, the Anthro-

pocene, first by E. J. Stoermer in the early 1980s and later by P. J. Crutzen [23]. While there is

an ongoing debate on both whether the Anthropocene constitutes indeed a geological epoch

[64, 102, 109] and, if this was so, when it actually has started [62], the term proved to be

expedient for the communication of evidences from environmental and sustainability sciences

as it characterizes the fundamentally novel relation between human beings and planet Earth.

As it is an essential goal of Earth science and natural sciences in general to qualitatively and

quantitatively understand the processes which constitute planetary dynamics, the Anthropocene

poses a huge challenge for the development of suitable models which represent a holistic picture

of the Earth system [100, 101]. In particular, a model of the Anthropocene necessitates the

inclusion of social processes as well as the accounting for feedbacks between the natural and

the human sphere.

1



2 1 Introduction

1.1 Modeling natural Earth System Dynamics

One of the most striking features that reflects the substantial impact of human activities on

a planetary scale is constituted by climate change. As such it depicts a characteristic of the

Anthropocene which has been subject to a large field of research in the past decades. Since

it is impossible to carry out experiments with the Earth system as a whole, the findings of

climate science necessarily rely on theoretical models and computer simulations of these.

There is a great variety of climate models which largely differ in their comprehensiveness, as

represented by the number of processes incorporated, and their dimensional complexity given

by the spatio-temporal resolution [18, 40].

On the one hand there are General Circulation models (GCMs) of the atmosphere and the

ocean, which utilize a very detailed representation of physical and chemical processes in

the natural Earth system in order to simulate the evolution of the climate of the past or the

near future on relatively short timescales [36, 47]. However, these models are criticized for

underestimating the role of vegetation dynamics and biogeochemical cycles, while spatial

resolution and comprehensiveness might be overestimated [18]. Indeed, the feedbacks which

occur when coupling an atmosphere-ocean GCM to a simple carbon cycle model may cause

predictions that considerably deviate from those of GCM simulations without such feedbacks

[21].

On the other hand there are simple, conceptual climate models which focus on certain

components of the Earth system and are typically of low dimension [40, 58]. In contrast to

GCMs, simple climate models allow rather long timescales of climate dynamics to be studied

[76]. Moreover, there exist very conceptual models of certain components of the Earth system

which aim at illustrating qualitative features of its dynamics rather than making quantitative

statements [95, 97].

A third category of climate models is depicted by the Earth system models of intermediate

complexity (EMICs) [18]. These models aim at an increased comprehensiveness compared

to GCMs as they also incorporate biological processes and biogeochemical cycles such as the

global carbon cycle [16, 32, 77]. Meanwhile they feature a coarser spatial resolution compared

to coupled GCMs and allow simulations of climate variability over a wide range of timescales

from seasons to multiple millennia [22].

Besides the progress which has been made through the study of climate models, the view on

the Earth as a complex dynamical system enabled the gaining of new insights [82]. For example

the underlying multistability of certain components of the Earth’s climate system makes them to

tipping elements, which might push the state of the whole Earth system into a different regime

once a critical threshold (“tipping point”) is transgressed [59].
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Combining the findings from various fields of climate science there is strong and growing

evidence that a large part of the global warming can be attributed directly or indirectly to

human activities such as the emission of greenhouse gases and land use change [91, 94]. The

observed changes in the natural Earth system impose a bunch of severe threats like droughts,

heat waves, floods and rising sea levels to the human habitats in many regions [99]. However,

while rising temperatures are generally expected to have negative consequences for both natural

and humans systems, the specific local or global impacts are still poorly understood and thus

often remain unforeseeable [99].

An own branch of economic models, so-called Integrated Assessment Models (IAMs), aims

at incorporating the effects of a changing climate into assessments of the future economic

evolution [73]. Often these models are designed to study the implications of certain policy

instruments rather than to reflect the dynamics of the Earth system as a whole [57].

However, most of the above-mentioned modeling approaches have in common that they

focus only on either the natural or the socio-economic component of the Earth system. Most

climate models (GCMs, EMICs) include the human impacts only as a static exogenous driver to

the dynamics, for example via emission scenarios, rather than describing the socio-economic

evolution dynamically. In IAMs in turn, the natural or climate component is often simplified by

linearization such that they are only adequate for short-term simulations on the timescale of

decades but do not describe the long-term evolution of the Earth system. Moreover, IAMs usually

treat the population dynamics as exogenous driver rather than modeling it endogenously and

thus lack relevant feedbacks between the natural and the socio-economic subsystems. For these

reasons none of the discussed models is able to adequately represent the complex long-term

dynamics of the whole Earth system in the Holocene and the Anthropocene [100]. Hence it is

desirable to establish a view on the Earth from a systems science perspective which explicitly

includes the human sphere, or anthroposphere, as a component [86].

1.2 Coevolutionary Modeling Approaches for the Anthropocene

One of the first remarkable attempts which accounted for the limitations posed by the natural

Earth system for the socio-economic evolution of humanity was undertaken by Meadows et al.

in the early 1970s and prominently published in the book The Limits to Growth which was

initiated by the Club of Rome [67]. The study utilized the World3 model to project the mid-

term evolution of several natural and socio-economic indicators for different scenarios, given

by varying assumptions on model parameters. Some of the projections turned out to lack

consistency with later observations which motivated follow-up versions of the report [68, 80].

Despite the manifold criticism about the World3 model, it definitely initiated a novel way of

thinking about the relation between humans and the planet Earth and can thus be regarded as
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the hour of birth of coevolutionary modeling.

The concept of coevolution was formally introduced into climate science by H. J. Schellnhuber

in the late 1990s [88, 89]. Within this framework the Earth system E is composed of an

ecosphere N and the human factor H:

E= {N,H} where: H = {A,S} (1.1)

The ecosphere N is composed of several sub-spheres like the atmosphere, biosphere, cryosphere

and so on. The human factor H in turn is given by its physical realization, the anthroposphere

A and a metaphysical component S, the Global Subject, thought of as a collective self-conscious

control force. The dynamic evolution of the Earth system can be represented in the coevolution

space which is spanned by the ecosphere and the anthroposphere (Figure 1.1). The strong

interconnection between these two spheres is reflected by the following abstract temporal

evolution equations for the states of the anthroposphere A and the ecosphere N in which the

state of the Global Subject S is regarded as a given precondition (or system parameter):

Ṅ(t) = F1(N,A,t|S)

Ȧ(t) = G1(N,A|S)
(1.2)

Equation (1.2) is a highly comprehensive representation of the Earth system dynamics. More-

over, it is noteworthy that it does not describe a deterministic system, but rather accounts for

the management or control of the dynamics through the human factor.

An important feature of the ecosphere within the coevolution space is displayed by the

ecological niche which is its subset within which human life (or life in general) on the planet is

possible. The limits of the ecological niche are closely related to the more recently suggested

planetary boundaries [83, 84, 93] by Rockström et al. Within this framework nine crucial

interlinked indicators for the integrity of the natural Earth system are identified and threshold

values not to be exceeded are set normatively, based on estimated values beyond which

the Holocene regime would likely be left. Together these boundaries form the so-called safe

operating space for humanity although it was recently shown with a dynamical systems approach

that reaching a meaningful amount of “safety” probably requires even narrower boundaries due

to the internal dynamics of the system [43]. While Rockström et al. focused on the limits of

the ecosphere, K. Raworth extended the concept by defining eleven socio-economic boundaries

which depict the social foundation of the anthroposphere [81]. Combined with the planetary

boundaries, which can be viewed as environmental ceiling, these are said to form the safe and

just operating pace for humanity.
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Figure 1.1: Schematic of the coevolution space which is spanned by the ecosphere N and the
anthroposphere A. For a given initial point P0 there is a bunch of pathways which evolve in the
accessible universe. Some regions might be inaccessible and others potentially imply a collapse
of the Earth system (K1,2). In that case the state of the ecosphere would evolve into undesirable
regimes outside the ecological niche. As humanity is able to control its actions the system is not
deterministic and pathways are allowed to cross each other. Adopted from [88].

Several modeling approaches have been proposed which make first steps towards an un-

derstanding of the Earth system in the coevolutionary sense. Brander and Taylor proposed

a simple model of coupled population and renewable resource dynamics in order to explain

the collapse of the Easter Island civilization [15]. Since then a relatively vast field of social-

ecological models has emerged which analyze the feedbacks between socio-economic conditions

and natural resource systems [42, 54, 55, 90]. However, most of these attempts focus on

specific local ecosystems (such as fishery, rangeland or wildlife) rather than on global scale

phenomena which are an emergent characteristic of the Anthropocene. The GUMBO model by

Boumans et al. in turn aims at a comprehensive representation of the whole Earth system at the

price of a large number of variables and parameters which render a qualitative understanding

impossible [14]. A more conceptual model which describes the global interaction of humans

with the carbon cycle has been investigated by Anderies et al. [2] and allows for a qualitative

understanding of the system’s topology. The framework recently proposed by Heitzig et al.

addresses the qualitative classification of a system’s state space, especially in the context of

planetary boundaries and the safe operating space [43]. Furthermore it suggests a metaphorical

framework which is in line with [89] and allows to communicate subtle dynamical properties
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of complex systems in an understandable way to laymen.

One potential feedback which is only seldom accounted for in established models are climate

impacts on both social and economic entities and processes. Even if there were no efforts

to mitigate climate change, the rising temperatures would sooner or later cause damages to

physical and human capital what in turn would decelerate the economic evolution and hence

decrease the emissions of greenhouse gases [61]. Kellie-Smith and Cox studied a conceptual

model which follows this reasoning and find the emergence of oscillations in the coupled

climate-economy system [48] even on relatively short timescales of some hundreds of years.

Finally, Motesharrei et al. in their model explicitly investigate the dynamic implications of

inequality within the society rather than treating all humans in exactly the same way, thereby

addressing the “justness” issue of social dynamics [70].

1.3 The copan:GLOBAL model

The copan project at the Potsdam Institute for Climate Impact Research aims at understanding

the mid- and long-term coevolution of the social and natural subsystems of the Earth in the

context of the safe and just operating space. The models developed and studied within this

scope are mainly of conceptual style and hence allow qualitative insights into complex dynamics

rather than quantitative predictions. Thereby they try to fill a gap in the model landscape of the

established Earth system models discussed above (Figure 1.2). Wiedermann et al. for instance

utilized an agent-based model of social and resource dynamics on a network topology to show

that fast imitation rates between agents can induce a phase transition into an unsustainable

regime [107].

The model which is studied within this thesis is called copan:GLOBAL. It is a conceptual,

low-dimensional coevolutionary Earth system model which describes the temporal evolution of

globally aggregated or averaged key quantities of the natural and socio-economic subsystems on

centennial to millennial timescales. Hence it is capable of reflecting the global natural dynamics

of the Holocene as well as characteristics and emergent phenomena of the Anthropocene.

The natural subsystem of the Earth is represented in the model via the global carbon cycle

and the global mean surface temperature, reflecting the climate. The socio-economic part

on the other hand describes the dynamics of the global human population, the aggregated

physical capital and a renewable technology knowledge stock. These quantities influence each

other by several processes such as photosynthesis, respiration, economic production, emissions,

population growth or climate impacts. From a physical perspective the model constitutes a low-

dimensional, deterministic dynamical system and can be analyzed using established analytical

and numerical techniques from the field of non-linear dynamics.
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World3
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only
natural

only
social
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pure
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Figure 1.2: Landscape of Earth System Models separated according to the modeled subsytems
on the vertical axis and the complexity (given by the number of processes and spatio-temporal
resolution) on the horizontal axis. Pure climate models (conceptual CMs, EMICs and GCMs) differ
considerably with respect to complexity but typically do not account for socio-economic dynamics.
Pure economic models also feature different degrees of complexity but treat the natural system
exogenously. The relatively complex IAMs strive for an integrated view of natural and social
subsystems and typically address quantitative questions relevant for policy-making. The World3
model used by the Club of Rome constitutes a pioneering work for the type of coevolutionary
modeling which lies within the scope of the copan project. The GLOBAL model studied within
this thesis has less variables than World3 which allows for a qualitative analysis from a dynamical
systems perspective. Adopted from [106].

1.4 Research Tasks and Overview of the Thesis

The state of research on coevolutionary dynamics discussed so far and the scope of the copan

project in particular, motivate the following research tasks for this thesis:

• Suitable sub-models shall be derived from the complete copan:GLOBAL model which

correspond to different stages of the natural and socio-economic coevolution in the

Holocene and the Anthropocene epochs.

• For each identified sub-model the asymptotic behavior given by its equilibria and at-

tractors shall be classified. This involves the identification of dynamic regimes in the

parameter space whose asymptotics feature the same characteristics.

• Moreover, the qualitative influence of the model parameters will be investigated. This

involves the analysis of possible bifurcations which occur under variation of the free

parameters.
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• As many parameters as possible shall at least roughly be estimated from available real-

world data in order to curtail the relevant parameter regime and thus identify the most

likely qualitative behavior. Meanwhile this will enable the comparison of characteristic

quantities of the dynamics with data acquired with differing methodological approaches,

thus potentially allowing for a validation of the parametrization.

The following chapters are organized as follows. The first section of chapter 2 briefly

introduces the concept of a dynamical system and gives an overview of bifurcation theory, in

particular those bifurcations which are of relevance for this thesis are discussed. The part on

dynamical systems closes with an introduction into the topology framework by Heitzig et al.

[43] as it is applied to the copan:GLOBAL model later on. The following sections introduce

concepts from economics (Section 2.2) and Earth science (Section 2.3) which are relevant for

the model design. The setup of the copan:GLOBAL model is extensively examined in chapter 3.

After giving an overview to the complete model which has been developed within the copan

project, several submodels are presented which have been defined as a part of the present

work. The following two chapters present all relevant findings which have been obtained

within the course of this work. Chapter 4 describes the estimation of most of the free model

parameters based on real world data and closes with a condensed overview Table in section

4.5. Chapter 5 constitutes the main part of the work as it contains a detailed analysis of

the asymptotic dynamics of the studied model versions. This comprises the determination of

equilibria, their stabilities, attractors as well as the study of bifurcations which occur when

certain parameters are varied. These analytical and numerical calculations are complemented

by graphical representations of the phase space of the models and their topology (in the sense

of the framework by [43]). Chapter 6 summarizes the main results of this work, discusses these

in the context of related research and gives an outlook on further directions of studying and

developing the copan:GLOBAL model. Finally, chapter 7 gives a condensed conclusion of the

thesis.



CHAPTER 2

Methodological Preliminaries and Concepts

This chapter introduces the theoretical background of methods and concepts used for the

development and analysis of the model. Section 2.1 reviews the major aspects of dynamical

systems theory and gives a brief introduction into the field of bifurcation theory. The following

sections are dedicated to the presentation of concepts from economics (2.2) and geoscience

(2.3) which are necessary for the model design, presented in the subsequent chapter.

2.1 Dynamical Systems

The mathematical concept of an autonomous deterministic dynamical system is used to

describe deterministic processes from different fields of science [53, Ch. 1.1]. While the

processes may originate from physical, chemical and biological as well as economical or social

systems, the mathematical description and hence the possible dynamical phenomena are

structurally similar.

2.1.1 Definition

All dynamical systems are characterized by the same “ingredients” which make up their formal

mathematical definition [53, Ch. 1.1].

Firstly, there is a state space X which forms the set of all possible states x ∈ X that the

system can exhibit. Depending on the nature of the system this space can be of very different

kind, for example an infinite-dimensional function space or a finite space of discrete states.

The systems regarded within this thesis are typically of low finite dimensions n and the state

components are given by real numbers, such that X = Rn.

The next ingredient is given by a time set T which depicts the set of all possible points in

time t ∈ T . One distinguishes between dynamical systems where time is discrete and thus

T = Z, and those with continuous time, where T = R. In this thesis only continuous-time

dynamical systems are treated.

9
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Finally a dynamical system needs something which makes it indeed “dynamic”. This is

achieved by an evolution law which prescribes the evolution of the state x ∈ X of the system

with time t ∈ T . In a very general way this can be formulated in terms of a map

φ t : X → X . (2.1)

Given an initial state x0 ∈ X the state x t at time t ∈ T is given by:

x t = φ
t x0 (2.2)

The evolution operator φ t needs to fulfill the following properties:

(i) φ0 = id (2.3)

(ii) φ t+s x = φ t(φs x) (2.4)

While condition (i) means that the state does not change spontaneously, condition (ii) states

that the evolution law does not change with time and thus the system is autonomous.

Putting these ingredients together leads to the following general definition [53, Ch. 1.1]:

Definition 1. An autonomous dynamical system is a triple {X ,T,φ t}, where T is a time set, X

is a state space and φ t : X → X is an evolution operator which fulfills conditions (2.3) and (2.4).

As already mentioned the dynamical systems regarded in this thesis have continuous time

(T = R) and a state space of finitely many real variables (X = Rn). For these systems the evolu-

tion law is often not given explicitly but rather implicitly via ordinary differential equations

(ODEs) [53, Ch. 1.4]. Given a state x = (x1,...,xn), its temporal evolution is defined via the

velocities

ẋ= f (x) (2.5)

where f : Rn→ Rn is a smooth function (or vector field). Equation (2.5) represents a set of n

autonomous ODEs. The existence and uniqueness of the solution to such an ODE system can

be proven. For the definition of a dynamical system the solution curve x(t,x0) (for a given

initial state x0) takes the role of the evolution operator in equation (2.2):

φ tx0 = x(t,x0) (2.6)
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2.1.2 Trajectories and phase portraits

Very basic geometric objects related to a dynamical system are its trajectories (or orbits) [53,

Ch. 1.2].

Definition 2. A trajectory starting at x0 is an ordered subset of the state space X :

τx0
= {x ∈ X : x = φ t x0, for some t ∈ T} (2.7)

For a continuous-time dynamical system trajectories correspond to curves in the state space.

There are special orbits of which the most simple one is an equilibrium (or fixed point):

Definition 3. A point x∗ ∈ X is called equilibrium if φ t x∗ = x∗ for all t ∈ T.

Thus, an equilibrium can be seen as a trajectory which exhibits the same state for all times.

If the dynamical system is given by an ODE system like (2.5), an equilibrium x∗ fulfills the

following condition:

f (x∗) = 0 (2.8)

Another class of special trajectories is given by cycles which are periodic trajectories:

Definition 4. A cycle Γ is a non-equilibrium periodic trajectory which satisfies φ t+T0 x0 = φ t x0

for all x0 ∈ Γ and t ∈ T for some T0 > 0. The minimal T0 which fulfills this property is called

period of the cycle.

For continuous-time systems cycles correspond to closed curves in the state space. If a cycle

Γ is isolated, meaning that there are no other cycles in a neighborhood of Γ , it is called a limit

cycle.

For the qualitative analysis of dynamical systems it is very helpful to have a geometric

representation of its dynamics. This is given by the phase portrait which is a partitioning of

the state space into trajectories. For low-dimensional systems (n≤ 2) the phase portrait can

actually be drawn, which allows for a graphical analysis of the system. Many important features

of the dynamics, like the number and types of asymptotic states can be retrieved directly from

the phase portrait. In order to obtain a more subtle classification of the phase space objects it

is useful to define a notion of stability which is done in the following section.
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2.1.3 Notions of stability

There are different notions of the stability of dynamical systems which have in common that

they characterize the behavior of a system after some sort of perturbation. Thus, when a system

is called “stable” it needs to be clear which concept of stability is referred to. Furthermore

there is some impreciseness about the terminology in the literature [53, 96]. Throughout

this thesis the subsequently introduced terminology is used which is mainly in line with [96].

The following definitions are formulated for equilibria of continuous-time, finite-dimensional

dynamical systems. However, analogous definitions hold for discrete-time systems and other

state spaces.

In the following a continuous-time dynamical system with state space X = Rn is considered

which is defined by the ODE system ẋ = f (x), where x ∈ Rn. The system features an equilibrium

state x∗.

Definition 5. The equilibrium x∗ is said to be attracting, if there exists a δ > 0 such that

lim
t→+∞

x(t) = x∗ for all x0 with ‖x0 − x∗‖< δ.

In other words all trajectories which start sufficiently close to x∗ will converge eventually

to the equilibrium. The subset B ⊆ X which contains all initial conditions which eventually

converge to an equilibrium is called its basin of attraction.

Definition 6. The equilibrium x∗ is called Lyapunov stable, if for each ε > 0 there is a δ > 0

such that ‖x(t)− x∗‖< ε for all t ≥ 0 and all x0 with ‖x0 − x∗‖< δ.

This means that trajectories which start sufficiently close to x∗ will stay in a finite neighbor-

hood around it for all times.

It is worth noting that these notions of stability can hold independently from each other. In

many cases, however, they occur simultaneously. An equilibrium which is both attracting and

Lyapunov stable is called asymptotically stable, or simply stable. Whether an equilibrium is

(asymptotically) stable can be checked by applying of the following theorem.

Theorem 1. Considering the dynamical system given by ẋ = f (x) which has an equilibrium x∗,

so that f (x∗) = 0. Denote by A the Jacobian matrix J of the system, evaluated at x∗:

A := J |x=x∗ =

(︃
∂ fi(x)
∂ x j

⃒⃒⃒⃒
⃒
x=x∗

)︃
i j

; i, j = 1...n

Then x∗ is stable if all eigenvalues λ1,...,λn of A have negative real parts. x∗ is unstable if at

least one eigenvalue λ of A has a positive real part.
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This type of analysis is referred to as linear stability analysis since the stability is determined

from the linearized system. This is legitimate since according to the Hartman-Grobman theo-

rem the phase space of the linearized system around a hyperbolic equilibrium is topologically

equivalent to that of the original system [96].1

The stability concepts introduced so far can also be transferred to limit cycles. The according

definitions and theorems are not shown here but can be found in appropriate textbooks like

[53]. The stability analysis of limit cycles is closely related to the stability of fixed point of

associated Poincaré maps which are discrete-time dynamical systems derived from continuous

trajectories. For the following considerations the distinction between stable limit cycles (which

are attracting nearby trajectories) and unstable limit cycles (which are repellent) is sufficient.

Finally it remains to be said that there are more, conceptually different notions of stability.

While the linear stability analysis focuses on stability against infinitesimal perturbations in the

state variables and is thus a local measure, the notion of basin stability quantifies resistance

against large perturbations, rendering it a global measure [69]. The basin stability of an

equilibrium is given by the volume of its basin of attraction. The response of a system to

infinitesimal perturbations in the function f which governs the dynamics is analyzed within

the context of structural stability analysis [53, Ch. 2.5].

1 The notions of hyperbolicity and topological equivalence are introduced in section 2.1.4.
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2.1.4 Topological equivalence

In order to study the qualitative behavior of a dynamical system it is desirable to classify

its properties (e.g. number and stabilities of equilibria) and to be able to compare different

systems with each other. For this purpose the concept of topological equivalence proves to

be very useful. It is basically a mathematical formulation of the intuitive requirement that

equivalent dynamical systems should have “qualitatively similar” phase portraits [53, Ch. 2.1].

Furthermore the notion of topological equivalence is a precondition for the definition of a

bifurcation which is explicated in the next section.

Definition 7. A dynamical system {T,Rn,φ t} is called topologically equivalent to a dynamical

system {T,Rn,ψt} if there is a homeomorphism1h : Rn→ Rn which maps the trajectories of the

first onto those of the second system, while the direction of time is preserved.

An example for two topologically equivalent planar phase portraits is shown in Figure 2.1.

Figure 2.1: Phase portraits of two topologically equivalent planar dynamical systems. There is a
homeomorphism which maps the trajectories of the left onto those of the right system. Taken from
[53, Ch. 2.1].

This definition can also be restricted to local neighborhoods U ,V ⊂ Rn of equilibria x0 ∈ U

and y0 ∈ V of two systems. Applying this concept to the neighborhood of equilibria and limit

cycles yields a classification scheme for these special trajectories. While the above definition is

also valid for discrete-time systems the following considerations are restricted to systems with

continuous time.

1 A homeomorphism is a continuous bijection whose inverse is also continuous.
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Classification of hyperbolic equilibria

As in the previous section a continuous-time dynamical system defined by ẋ = f (x), where

x ∈ Rn, is considered. The system has an equilibrium x∗ and the Jacobian evaluated at this

equilibrium is denoted by A. A has n+, n− and n0 eigenvalues with positive, negative and zero

real part, respectively.

Definition 8. The equilibrium x∗ is called hyperbolic if n0 = 0. A hyperbolic equilibrium is called

a saddle if n+n− > 0.

This means that a non-hyperbolic equilibrium has at least one eigenvalue exactly on the

imaginary axis, which turns out to occur only rarely in systems describing real-world processes

with generic parameters. The hyperbolicity condition is typically violated at particular parameter

values at which a bifurcation occurs (see Section 2.1.5).

The following theorem allows a topological classification of equilibria:

Theorem 2. The phase portraits near two equilibria x∗ and y∗ are locally topologically equivalent

if and only if they have the same numbers n+ and n− of eigenvalues with positive and negative

real part, respectively.

A proof of this theorem can be found in appropriate textbooks [53, Ch. 2.2][3, 39].

Applying this theorem to two-dimensional (planar) systems gives a topological classification

scheme for its hyperbolic equilibria. The Jacobian evaluated at an equilibrium, A, has two

eigenvalues λ1 and λ2. These can be calculated by solving the characteristic equation of the

Jacobian:

λ2 −τλ+∆= 0 (2.9)

where τ = tr(A) denotes the trace of the matrix and ∆ = det(A) its determinant. Hence, for the

eigenvalues the following holds:

λ1,2 =
τ±
p
τ2 − 4∆
2

(2.10)

Moreover, the following formulas generally hold for the trace and the determinant of A:

τ= λ1 +λ2 (2.11)

∆= λ1λ2 (2.12)

If ∆ < 0 both eigenvalues are real and have opposite signs (n+ = n− = 1). According to the

above definition such equilibria are called saddles.
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If ∆ > 0 the real parts of the eigenvalues have the same signs. If τ > 0 both eigenvalues

have positive real part (n+ = 2, n− = 0) and the equilibrium is unstable. If τ < 0 both have

negative real parts and thus the equilibrium is stable. Topologically these are all possible cases.

A finer distinction can be achieved by looking at the discriminant term under the square root in

equation (2.10). If τ2 − 4∆> 0 the eigenvalues are real, such an equilibrium is called a node.

If τ2 − 4∆ < 0 the eigenvalues are complex conjugates and the corresponding equilibrium

is called a focus or spiral. Topologically, however, nodes and foci of the same stability are

equivalent which is explicitly shown in [53, Ch. 2.1]. An overview of this classification scheme

is given in Figure 2.2.

saddles

unstable
nodes

stable
nodes

unstable
foci

stable
foci

Figure 2.2: Topological classification scheme for hyperbolic equilibria in planar system. All saddle
points lie in the reddish region with ∆< 0 and are topologically equivalent. All stable equilibria lie
in the greenish region with ∆> 0 and τ < 0. The blueish region with ∆> 0 and τ > 0 contains all
unstable nodes and foci. The black curve divides the nodes from the foci which are topologically
equivalent though, given that they have the same number of eigenvalues n+ and n− with positive
and negative real parts, respectively.
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Classification of hyperbolic limit cycles

The notion of hyperbolicity can also be applied to limit cycles. A limit cycle is called hyperbolic if

the the corresponding fixed point of the Poincaré map derived from the system is hyperbolic [53,

Ch. 2.2]. The topological classification of the limit cycle is done according to the eigenvalues

of the Jacobian of the Poincaré map, evaluated at its fixed point. These are called called

multipliers of the cycle.1 Topologically equivalent limit cycles have the same numbers n+
and n− of multipliers outside and inside the unit circle, respectively. As the Poincaré map of a

cycle of a n-dimensional system is of dimension n− 1, the relation n+ + n− = n− 1 holds. For

example, the Poincaré map derived from a two-dimensional system has dimension one. A limit

cycle of the two-dimensional system corresponds to a fixed point of the one-dimensional map

and has exactly one multiplier µ. Thus, there are just two possible topological classifications of

the cycle given by the sign of µ. If n+ = 1 the cycle is unstable, if instead n− = 1 the cycle is

stable. For higher dimensional systems (n≥ 3) the case n+n− > 0 is also possible. Analogous

to equilibria, these are called saddle cycles.

2.1.5 Bifurcations

Having introduced the concept of topological equivalence of dynamical systems enables the

introduction of the important notion of bifurcations [53, Ch. 2.3, 2.4]. Consider a dynamical

system which depends on some m-vector of parameters α. For the continuous-time case with

X = Rn it can be represented by the following ODE system:

ẋ = f (x ,α) , x ∈ Rn, α ∈ Rm (2.13)

Generally a change in the parameters α will lead to a change in the vector field f and hence in

the phase portrait of the system. The following definition is valid for any time set T and state

space X :

Definition 9. The occurrence of a topologically non-equivalent phase portrait under variation of

parameters is called a bifurcation.

The parameter space can be subdivided into maximal connected subsets (strata) for which

the system has a topologically equivalent phase portrait. The partitioning of the phase space into

such regions is called parametric portrait or bifurcation diagram. The boundaries of these

regions in the parameter space are called bifurcation boundaries and are typically smooth

manifolds of dimension < m. This enables the definition of the codimension of a bifurcation:

1 The logarithms of the multipliers are called the Floquet exponents of the cycle and the real parts of the latter
are called Lyapunov exponents which quantify the rate of amplification or decay of perturbations.
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Definition 10. The difference between the dimension of the parameter space m and the dimension

of the bifurcation boundary is called the codimension of the bifurcation.

For example, if a one-dimensional parameter space R is divided into two regions by a critical

bifurcation value αcrit of dimension zero, the bifurcation is of codimension one. This also

means that the codimension sets the minimal number of parameters which need to be varied

simultaneously for the bifurcation to occur.

Equivalently, the codimension equals the number of independent equality conditions which

characterize a bifurcation. These are typically algebraic equations for some quantities derived

from the system. Apart from these bifurcation conditions there are typically some inequal-

ities which need to be fulfilled at a bifurcation point. These are called non-degeneracy and

transversality conditions.1 A violation of such an inequality can imply a bifurcation of a higher

codimension.

Another important distinction is that into local and global bifurcations [96, Ch. 8.4 ]. A

bifurcation is called local when it can be detected by looking at an arbitrarily small neighborhood

of an equilibrium. For the observation ob global bifurcations, however, one needs to regard

large regions of the phase space.

The mechanisms which lead to some local bifurcation are generally independent of the

specific system. They can be studied in simple (polynomial) prototypical systems which feature

a certain type of bifurcation. These prototypical systems are called topological normal forms

for the bifurcation. Systems which feature a bifurcation of the same type are locally topologically

equivalent to its normal form.

In the following sections all types of bifurcations of equilibria and cycles which are relevant

for this thesis are introduced.

1 In the following examples the non-degeneracy and transversality conditions are only stated explicitly if they are
of relevance at a later point.
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Local Bifurcations of Equilibria and Cycles

The most simple local bifurcations of equilibria occur in one-dimensional systems of the form:

ẋ = f (x ,α) , x ∈ R, α ∈ R (2.14)

Consider at first the following system:

ẋ = α+ x2 (2.15)

which has two equilibria x∗1,2 = ±
p
−α if α < 0, one equilibrium x∗0 = 0 if α = 0 and no

equilibria for the case α > 0. x∗1 = +
p
−α is an unstable equilibrium while x∗2 = −

p
−α is

stable. At α= 0 the equilibrium becomes non-hyperbolic as the eigenvalue (the derivative in

the 1D case) becomes zero:

λ=
∂ f
∂ x

⃒⃒⃒⃒
x=0
= 0 (2.16)

The phase portraits for the cases α < 0 , α = 0 and α > 0 are not topologically equivalent. Thus

a bifurcation occurs at the critical value α0 = 0. This bifurcation is called a fold or saddle-node

bifurcation. It is the basic mechanism for equilibria to appear or disappear under variation of a

parameter. As there is one equality condition (2.16) which characterizes the bifurcation, it has

codimension one. Additionally the non-degeneracy condition

∂ 2 f
∂ x2

⃒⃒⃒⃒
x=0
6= 0 (2.17)

must be fulfilled. Figure 2.3 shows phase portraits and the generic bifurcation diagram of a

fold bifurcation.

The next type of bifurcation which is of importance is called transcritical bifurcation. It

typically occurs in systems which have an equilibrium whose position is independent of the

parameter values. If another equilibrium “passes through” the first one when a parameter

is varied, the stabilities of the equilibria are “exchanged”. The prototypical example for a

transcritical bifurcation reads as follows:

ẋ = αx − x2 (2.18)

This system has one equilibrium at x∗0 = 0 and one at x∗1 = α. x∗0 is stable for α < 0 and unstable

for α > 0, for x∗1 the situation is reversed. For the case α = 0 there is only one equilibrium
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Figure 2.3: Generic bifurcation diagram of a fold bifurcation. The vertical lines show non-
equivalent one-dimensional phase portraits of system (2.15) for different α. The red curve corre-
sponds to the positions of the stable (continuous) and unstable (dashed) equilibria.

at x∗ = 0 which is non-hyperbolic as condition (2.16) holds here as well. Again the phase

portraits for α < 0 , α= 0 and α > 0 are topologically non-equivalent and hence a bifurcation

occurs (see Figure 2.4). Like the fold bifurcation it is of codimension one.

Figure 2.4: Generic bifurcation diagram of a transcritical bifurcation. The vertical lines show
exemplary one-dimensional phase-portraits of system (2.18) for different α. The green curves
correspond to the positions of stable (continuous) and unstable (dashed) equilibria.

Note that although both saddle-node and transcritical bifurcations are local bifurcations, a

saddle-node bifurcation still has “global consequences” since at the critical parameter value,
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the limit that a trajectory starting from a far away point converges to makes a discontinuous

jump, if that trajectory converged to the eliminated stable equilibrium before the bifurcation.

In other words, basins of attraction change locally and smoothly under transcritical bifurcations

but globally and non-smoothly under saddle-node bifurcations.

A third type of bifurcation in one-dimensional systems is the pitchfork bifurcation for which

the normal form is given by ẋ = αx ± x3. It is not explained here as it is not of relevance for

this thesis but a discussion can be found in [96, Ch. 3.4].

The next important type of bifurcation occurs in systems which have a minimal dimension of

two:

ẋ = f (x ,α) , x = (x1,x2) ∈ R2, α ∈ R (2.19)

In such systems the hyperbolicity condition (Reλ 6= 0 for all eigenvalues) can be violated in

two ways. Either one eigenvalue becomes exactly zero when a parameter is varied. This leads

to the same bifurcations as discussed above for one-dimensional systems. Another possibility is

that two complex conjugate eigenvalues cross the imaginary axis. This leads to the so called

Andronov-Hopf (AH) bifurcation which is one mechanism for the creation of limit cycles from

equilibria.

The following system, given in polar coordinates (ρ,φ) is a prototypical example in which

an Andronov-Hopf bifurcation can be observed:

ρ̇ = ρ(α−ρ2)

φ̇ =ω
(2.20)

For α < 0 there is one stable equilibrium at ρ∗ = 0. For α > 0 this equilibrium is unstable and

there is a stable limit cycle trajectory located at ρ =
p
α. The non-equivalent phase portraits

show that a bifurcation occurs at α0 = 0 (see Figure 2.5).

By writing the system in Cartesian coordinates one can show that the eigenvalues of the

Jacobian at the equilibrium ρ∗ = 0 are given by λ1,2 = α± iω. Thus for α= 0 the eigenvalues

lie on the imaginary axis as discussed above and the equilibrium becomes non-hyperbolic. The

condition

λ1,2 = ±iω (2.21)

is the defining condition for all Andronov-Hopf bifurcations. Additionally at an AH bifurcation
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point the following non-degeneracy condition must be fulfilled:

l1(α0) 6= 0 (2.22)

where l1(α) denotes the first Lyapunov coefficient, a quantity which is calculated from higher-

order derivatives of the vector field (see [53] for a definition).

Depending on whether l1 is negative or positive at the bifurcation point, the limit cycle which

appears is either stable or unstable. If l1 < 0 (as in the example above) a stable limit cycle

appears, this case is denoted as super-critical Andronov-Hopf bifurcation. In the opposite case,

l1 > 0, the limit cycle is unstable which is denoted as sub-critical Andronov-Hopf bifurcation.

If the inequality (2.22) is violated a bifurcation of codimension two occurs which is discussed

later in this section.

Figure 2.5: Phase portrait of generic planar systems which exhibit an Andronov-Hopf bifurcation
at α= 0. Top: Super-critical case given by equations (2.20) in which a stable limit cycle appears
for α > 0. The first Lyapunov coefficient is negative at the bifurcation point, l1 < 0. Bottom:
Sub-critical case given by ρ̇ = ρ(α+ρ2), φ̇ = ω, in which an unstable limit cycle is present for
α < 0. Here l1 > 0 holds. Taken from [53, Ch. 3.4].



2.1 Dynamical Systems 23

Global Bifurcations of Cycles

The Andronov-Hopf case discussed above is just one of many mechanisms in which limit cycle

trajectories can be created through a bifurcation. There are other bifurcation mechanisms in

which limit cycles appear globally meaning that the bifurcation cannot be detected locally at

an equilibrium [96, Ch. 8.4].

The first case of a global bifurcation is given by the fold or saddle-node bifurcation of

cycles. It can be observed in the following system, given in polar coordinates:

ρ̇ = αρ +ρ3 −ρ5 (2.23)

φ̇ =ω (2.24)

It is helpful to look only at the one-dimensional system for ρ ≥ 0 given by the first equation

(see Figure 2.6, top). For α > 0 it has two equilibria at ρ∗0 = 0 (unstable) and ρ∗1(α) > 0

(stable). The latter one corresponds to a stable limit cycle in the full two-dimensional system.

If α is decreased below 0 the unstable equilibrium at ρ∗0 = 0 becomes stable and an additional

unstable equilibrium occurs at ρ∗2(α)< ρ
∗
1(α). This corresponds to an unstable limit cycle in

the full system. Thus a sub-critical Andronov-Hopf bifurcation which was mentioned above

occurs at α0 = 0. If α is further decreased the equilibria at ρ∗1 and ρ∗2 approach each other until

they coalesce at α1 = −1/4 and disappear for α < −1/4. This corresponds to a fold bifurcation

in the one-dimensional system. In the two-dimensional system the two limit cycles coalesce

and vanish which is denoted as a fold bifurcation of cycles referring to the one-dimensional

analog. This bifurcation is global as it is not observable in an arbitrarily small region of the

phase space.1 This bifurcation has codimension one as it is achieved by the variation of one

parameter.

1 Some authors like [53] denote this as local bifurcation of cycles since the bifurcation corresponds to a local
bifurcation in the corresponding Poincaré map.
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Figure 2.6: Mechanism and phase portraits of a fold bifurcation of cycles. Top: In the one-
dimensional radial system given by equation (2.23) a fold bifurcation occurs at α = −1/4. Bottom:
The fold bifurcation in the radial system causes a global bifurcation of two limit cycles in the planar
system. Modified from [96, Ch. 8.4].

The last codimension one bifurcation to be introduced is the homoclinic bifurcation which

is another example for a global bifurcation. It requires the definition of a homoclinic orbit.

Given a continuous-time dynamical system like (2.13) with an evolution operator φ t and an

equilibrium at x = x∗.

Definition 11. An orbit Γ starting at some x ∈ Rn is called homoclinic to the equilibrium x∗ if

φ t x → x∗ for t →±∞.

A homoclinic orbit can be shown to be structurally unstable, which means that small per-

turbations in the governing equations will lead to non-equivalent phase portraits and thus to

bifurcations of the system. Figuratively spoken a homoclinic bifurcation occurs when a limit

cycle touches a saddle point in the phase space and thus becomes a homoclinic orbit at the

bifurcation point. If the parameter is changed further the homoclinic orbit vanishes and only

the saddle is left (Figure 2.7).

For two-dimensional systems the homoclinic bifurcation is characterized by the Andronov-

Leontovich theorem [53, Ch. 6.2]. It is not stated completely at this point but just one of its

implications. Suppose a saddle point x∗ has the two real eigenvalues λ1,2(α). One can define

the quantity σ(α) = λ1(α) +λ2(α) which corresponds to the trace of the Jacobian evaluated

at the saddle. If the homoclinic bifurcation occurs at a critical parameter value of α0 = 0, the

associated limit cycle is stable if σ(0)< 0 and unstable if σ(0)> 0 (Figure 2.7).
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Figure 2.7: Phase portraits of a planar system which features a bifurcation of a homoclinic orbit Γ0
at a critical parameter β = 0. For the case σ(0)< 0 a stable limit cycle appears for β > 0 (top), for
σ(0)> 0 the situation is reversed and an unstable limit cycle appears (bottom). Taken from [53,
Ch. 6.2].
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Two-parameter Bifurcations

The following section is devoted to the introduction of some relevant codimension 2 bifurcations.

These can only be observed in systems with a minimum of two free parameters:

ẋ = f (x ,α) , x ∈ Rn, α= (α1,α2) ∈ R2 (2.25)

Suppose the system exhibits a local bifurcation (fold or AH) of some equilibrium x∗ at some

critical α = α∗ = (α∗1,α∗2). Generically the equilibrium condition (2.8) together with the

respective bifurcation condition, namely the non-hyperbolicity conditions (2.16) or (2.21),

implicitly define a one-dimensional bifurcation curve in the (α1,α2)-plane.

If one moves along such a bifurcation curve in the parameter space, additional bifurcation

conditions might be fulfilled at some point. If one follows for instance a fold bifurcation curve in

a one-dimensional system, the non-degeneracy condition, ∂ 2
x f (x = x∗,α= α∗) 6= 0 (Equation

(2.17)) might be violated at some particular point. At such a point a so-called cusp bifurcation

occurs. As this condition involves higher-order derivatives of f , it cannot be detected by looking

only at the eigenvalues of the Jacobian. The Cusp bifurcation can be observed in systems with

n≥ 1.

If one follows a fold curve in a two-dimensional system, the second eigenvalue of the non-

hyperbolic equilibrium could become zero, λ2 = 0. This is referred to as a Bogdanov-Takens

(BT) or double zero bifurcation and is observable in systems with n ≥ 2. Alternatively one

might of course also follow a Andronov-Hopf bifurcation with λ1,2 = ±iω and would observe a

Bogdanov-Takens bifurcation at the point where ω = 0. A generic case of the BT bifurcation is

explained in more detail in Figure 2.8.

An Andronov-Hopf bifurcation curve is described by a non-hyperbolic equilibrium with

λ1,2 = ±iω and the non-degeneracy condition l1(α∗) 6= 0, equation (2.22). If one moves along

the curve and the latter condition is violated, a Bautin or generalized Hopf (GH) bifurcation

occurs. It corresponds to the change from a sub- to a super-critical Andronov-Hopf bifurcation.

Like the cusp bifurcation it cannot be detected by only looking at the eigenvalues of the

Jacobian since the computation of l1 involves higher order derivatives of f . The GH bifurcation

is explained in more detail in Figure 2.9.

In three-dimensional systems one might, by following either a fold or Andronov-Hopf bifur-

cation curve reach a point at which there is one eigenvalue zero, λ1 = 0, and the two others

cross the imaginary axis, λ2,3 = ±iω. At such a point a Gavrilov-Guckenheimer or Fold-Hopf

or zero-pair bifurcation occurs.

In systems with a minimal dimension of four, one might, by following an Andronov-Hopf

bifurcation curve, reach a point at which it touches another Andronov-Hopf curve and thus
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simultaneously two pairs of eigenvalues lie on the imaginary axis, λ1,2 = ±iω0 and λ3,4 = ±iω1.

The corresponding codimension two bifurcation at this point is called Hopf-Hopf or two-pair

bifurcation.

The above-mentioned five different bifurcation types are all possible local codimension-two

bifurcations of generic continuous-time dynamical systems. For this thesis only the Bogdanov-

Takens (Figure 2.8) and Bautin (Figure 2.9) bifurcations are of relevance.
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Figure 2.8: Bifurcation diagram of a generic Bogdanov-Takens bifurcation at the point (α1,α2) =
(0,0). The bifurcation point lies at the intersection of a fold bifurcation curve (F±), an AH curve (H)
and a homoclinic bifurcation curve (P). Crossing F− from region 1 to region 2 a fold bifurcation
of a saddle and a stable node occurs. The stable node becomes unstable in a super-critical AH
bifurcation when crossing H from 2 to 3. The stable limit cycle in region 3 becomes homoclinic to
the saddle at P and vanishes in region 4. The remaining unstable node coalesces with the saddle in
another fold bifurcation when crossing F+. At the bifurcation point (0) the equilibrium is still stable
but non-hyperbolic, such that the speed of convergence is slower than exponential. The reversed
case in which the limit cycle in region 3 is unstable is also possible. Modified from [53, Ch. 8.4].
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Figure 2.9: Bifurcation diagram of a generic Bautin bifurcation at the point (α1,α2) = (0,0). The
bifurcation point lies at the intersection of a super-critical AH curve (H−), a sub-critical AH curve
(H+) and a curve of fold bifurcation of cycles (F). Region 1 features a stable node which becomes
unstable in a super-critical AH bifurcation when crossing H− to region 2. When crossing H+ from
region 2 to 3 the node becomes stable again via a sub-critical AH bifurcation. As the curve F is
approached the two limit cycles come closer and ultimately vanish at F in a fold bifurcation of
cycles such that only the stable node is left. The reversed situation in which the outer limit cycle is
unstable is also possible. Modified from [53, Ch. 8.3].
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2.1.6 Topology of managed dynamical systems with desired states

In addition to the study of the asymptotic behavior of a dynamical system further topological

features of its phase space can be of interest. Its partitioning into different basins of attraction

reveals important information about the asymptotic behavior. In several applications, however,

there might also be normative conditions prescribed which render some states of a dynamical

system (un)desirable. Such conditions would give another partitioning of the phase space. The

topology might further be influenced if some of the parameters which govern the dynamics are

variable, for instance through active control or “management” of the system. Such problems

are the subject of the mathematical field of viability theory which is closely related to optimal

control theory [4–6]. The central goal of a viability problem is to identify the viability kernel of

an environment within a system’s state space, which is given by the subset of initial states which

remain within this environment under control. The development of algorithms to compute the

viability kernel is subject to recent research [12, 87]

Another comprehensive framework for a topological classification of such dynamical systems

has recently been presented in [43]. The work by Heitzig et al. is extending viability theory by

singling out one flow of the system as the default one, naturally yielding a partition of the state

space called Topology of Sustainable Management. It has proven to be particularly useful for

applications in Earth system science and can be related to the concepts of planetary boundaries

and the safe operating space which have been mentioned in section 1.2.

Within this topology framework a manageable dynamical system with desirable states is

given by the following ingredients (see [43]):

1. A dynamical system with state space X and a default dynamics represented by default

trajectories τx for all x ∈ X .

2. A set of desirable states X+ ⊆ X whose complement X− = X − X− forms the undesired

region.

3. A notion of management options represented by a family of admissible trajectories Mx for

each x ∈ X .

The desirable region is also referred to as the sunny part and the undesirable as the dark part

of the state space.

Given these ingredients one can find a partition of the state space by posing questions like

whether one can stay in the sunny region forever with or without management and whether

some part is reachable from another. The full possible topological partition of a phase space

is shown in Figure 2.10 in the form of a decision tree. The denotations of the different state
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space regions are metaphors related to the picture of a boat floating or rowed in some waters.

Rigorous mathematical definitions of the regions are given in [43].

An interesting feature of the topological partition is the emergence of several dilemmas

which the managing agent might face. For example, the so-called “lake dilemma” poses the

choice between uninterrupted desirability (through active management) and eventual safety

(without the need for management after a certain time).
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Figure 2.10: Decision tree which gives an overview of the topological partition of dynamical systems
with desirable states. The so-called main cascade partition is divided regarding whether one can
ultimately stay in the sunny part forever by default (upstream U), by management (downstream
D), reach it repeatedly (eddies E), finitely often (abyss Υ ) or never (trench Θ). The manageable
partition is given by those regions where one can stay in the sunny part forever (with or without
managing). Figure taken from [43].
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2.2 Socio-economic concepts

After having introduced the most important mathematical and physical concepts which are

mainly relevant for the model analysis, this section is dedicated to the theoretical background

of several socio-economic concepts which are relevant for the model design. The first section

2.2.1 reviews in a nutshell the most important aspects of neoclassical growth theory in form of

the Solow-Swan model. The following section 2.2.2 is dedicated to the microeconomic general

equilibrium theory which describes the allocation of production factors between different

goods or sectors. In the last section 2.2.3 some concepts concerning population dynamics are

introduced.

2.2.1 The Solow-Swan model of economic growth

The original Solow-Swan model describes economic growth, reflected by the increase in eco-

nomic output per capita, due to the accumulation of physical capital (such as tools, buildings,

infrastructure, etc.). Capital as an economic entity has several properties of which the first

is that it is productive. This makes it a factor of production of an economy [103, Ch. 3].

Furthermore capital is produced which makes it different from natural resources or land area

which are also factors of production. The property of being limited in use distinguishes it from

factors like ideas and technological advances. Finally physical capital depreciates with usage

and time. A growth model which describes the evolution of capital should incorporate these

features.

The economic output Y of a whole economy in this type of macroeconomic model is described

by a macroscopic production function F :

Y = F(L,K) (2.26)

where L > 0 and K > 0 denote the factors of production labor and capital, respectively.1 In the

Solow-Swan model, the production function F is assumed to fulfill several properties [104].

Firstly, it features constant returns to scale which means, mathematically, it is homogeneous

of degree one:

F(αL,αK) = αF(L,K) ∀ α > 0 (2.27)

Furthermore F has positive but diminishing marginal returns which can be expressed via its

1 There are more factors of production than labor and capital such as resources and technology. These are,
however, not treated in the classical Solow-Swan model and thus not considered at this point.
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derivatives:

∂ F
∂ X

> 0 ∀ X (2.28)

∂ 2F
∂ X 2

< 0 ∀ X (2.29)

for X ∈ {L,K}. Finally F fulfills the Inada conditions:

lim
X→0

∂ F
∂ X
=∞ (2.30)

lim
X→∞

∂ F
∂ X
= 0 (2.31)

for X ∈ {L,K}.
An often used function which fulfills all of the above conditions is the Cobb-Douglas function

[103, Ch. 3]:

Y = FCD(L,K) = aL1−κKκ (2.32)

where a > 0 is a constant referred to as total factor productivity of the economy. The constant

0< κ < 1, also called elasticity, corresponds to the capital’s share of the total income, given

that in a perfectly competitive economy the marginal returns pK =
∂ F
∂ K for the factors will be

paid (as capital rent to the owners of capital and as wages to workers):

pK K
Y
=

∂ F
∂ K K
Y
=
κaL1−κKκ−1K

aL1−κKκ
= κ (2.33)

So far it was described how capital contributes to the generation of the economical production

Y . To close the loop one needs also to describe how it is produced and how it depreciates. The

economy in the Solow-Swan model is a closed system without a government as actor. Thus the

economic output is spent completely in the forms of consumption C and investments I (or

savings):

Y = C + I (2.34)

While consumption C does not alter the capital stock, investments I do so. Assuming a constant

savings ratio 0≤ s ≤ 1 one gets:

I = sY (2.35)
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While investments increase the capital stock K , it is also decreased due to depreciation D. For

simplicity one can assume that this happens at a constant rate δ. Thus the rate of change of K

is given as follows:

K̇ = I − D = sY −δK = saL1−κKκ −δK (2.36)

From a mathematical perspective equation (2.36) defines a one-dimensional dynamical system

(Figure 2.11). The equilibrium states are obtained by setting K̇ = 0:

K∗0 = 0 (2.37)

K∗1 =
(︁ sa
δ

)︁ 1
1−κ

L (2.38)

K∗0 is always unstable as ∂ K̇
∂ K

⃒⃒⃒
K=0
∝ ∂ Y

∂ K

⃒⃒⃒
K=0
= +∞. K∗2 is thus necessarily a stable equilibrium

which is confirmed by considering the derivative ∂ K̇
∂ K

⃒⃒⃒
K=K∗1

= δ(κ− 1)< 0 as κ < 1 and δ > 0.

Figure 2.11: The Solow-Swan model as one-dimensional dynamical system which describes the
evolution of the physical capital stock K . Capital increases due to investments I = sY ∝ Kκ and
decreases due to depreciation D = δK . There is a stable equilibrium at K∗1 .

Thus the economy will always converge to the equilibrium state K∗1 at which the per-worker

income y∗ amounts to:

y∗ =
Y ∗

L
= a

κ
1−κ

(︁ s
δ

)︁ 1
1−κ

(2.39)

While savings ratio s and productivity a increase the equilibrium per-worker income, deprecia-
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tion δ decreases it. For consumers more relevant than the average per-worker income y∗ is the

average per-worker consumption c∗ = (1− s)y∗. It can be shown that c∗ is maximized with

respect to the savings ratio by choosing s = κ. Figuratively spoken this means that the capital’s

share of income κ is invested while the labor’s share of income (1−κ) is consumed.

So far a constant labor force L was assumed. The number of workers is, however, dependent

on the size of the population P which is not constant over time. The classical Solow-Swan

model simply assumes exponential population growth. This and other simple models for the

dynamics of the population that are more realistic on longer timescales are presented in sections

2.2.3 and 3.3.

Moreover, other factors like the availability and use of resources will in reality affect the output

of an economy. A very simple approach to also incorporate resource and land availability into

the Solow-Swan model is discussed in [85, Ch. 1]. A more elaborate extension to neoclassical

growth theory which accounts for resource and energy use is presented in [8]. These findings

have also been incorporated in the model design for this thesis which is discussed in more

detail in chapter 3.

2.2.2 General equilibrium theory

If an economy is composed of different sectors of production the question arises how the

available factors of production which are used by all sectors (labor, capital, etc.) are allocated

amongst them. The sectors might feature different productivities or depend on further factors

of production which are not shared with other sectors. Assume for instance the total economic

output Y is composed of the outputs of two independent sectors A and B:

Y = YA+ YB (2.40)

where YA and YB are given by suitable production functions, for example of Cobb-Douglas form

as given by equation (2.32). Any allocation of labor force L and capital K to the sectors A and

B needs to fulfill the following constraints:

L = LA+ LB

K = KA+ KB

(2.41)

In General equilibrium theory it is assumed that the allocation happens via perfect factor markets

which form equilibrium prices for the factors (e.g. wages for labor and rents for capital) [71].

As argued in the previous section, in a perfectly competitive economy these prices equal the

marginal returns of the factors of production. These equilibrium conditions can be expressed
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as follows:

∂ YA

∂ LA
=
∂ YB

∂ LB

∂ YA

∂ KA
=
∂ YB

∂ KB

(2.42)

Generally, an analytical solution to the equation system (2.42) under the constraints (2.41)

might necessitate further assumptions on the elasticities of the factors. Otherwise the solution

can be obtained by numerical optimization algorithms. For the model studied in this thesis the

sectors refer to different forms of energy which can be used (biomass, fossils, renewables).

2.2.3 Demographic models

As already mentioned in section 2.2.1 the evolution of an economy is closely related to the

the evolution of the population size. For instance the factor of productivity labor L is mainly

determined by the population and in turn the consumption C has to be shared among all

people.

A first attempt to account for population dynamics in economic growth models is to extend

the Solow-Swan model by an exogenous growth rate γ of labor force L:

L̇ = γL (2.43)

For the per-worker capital k = K/L this implies the following dynamics:

k̇ =
K̇ L − K L̇

L2
=

sY −δK
L

−
γK
L
= s y − (δ+ γ)k (2.44)

where equations (2.36) for the capital accumulation and (2.43) for the population dynamics

have been used. Equation (2.44) makes clear that the population growth rate γ has the same

effect for the per-capita quantities k (and thus y) as the depreciation rate δ. Thus the dynamics

of the per-capita quantities does not change qualitatively compared to the model without

population growth, meaning that these will reach constant equilibrium values k∗ and y∗. The

absolute quantities K and Y will, however, grow with the same rate γ as the population does.

While a constant exogenous growth rate might be empirically a reasonable assumption for

relatively short timescales of several years, it evidently does not hold true for longer timescales

of several hundreds of years. Hence it is desirable to determine the reproduction rate of the

population endogenously. Indirectly this has been done by the British economist Thomas R.

Malthus in the late eighteenth century [65]. He argued that reproduction of humans was

mainly limited by the availability of resources (such as land in agricultural societies). If there
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is an abundance of resources the population will grow, leading, however, to less available

resources (or land) per person. This will in turn prevent further population growth such that

ultimately constant levels of population and resources per capita would be reached. Moreover

Malthus reasoned that only a deliberate reduction of the offspring would effectuate higher

per-capita incomes.

Malthus’ argument can be formalized into a mathematical model for the dynamics of the

population P. Most generally Ṗ is given as follows:

Ṗ = P( ffert − fmort) (2.45)

where ffert and fmort are functions describing how the fertility and mortality of the people depend

on some relevant factors, respectively. Malthus argues that fertility will increase proportional

to the available resources (or consumption C) per capita. Mortality is simply assumed to have

a constant baseline value, thus:

Ṗ = P
(︂

p
C
P
− q
)︂

(2.46)

where p and q are parameters. It can easily be seen from equation (2.46) that at equilibrium

either the population is zero P∗0 = 0 or the per-capita consumption has a constant value of(︀ C
P

)︀∗
= q/p. To take up the formulation from above, the consumption can be written as a certain

fraction 1− s of the total economic output Y 1, which can be described by some production

function like 2.32. This leads to the following differential equation for P:

Ṗ = P
(︂

p
(1− s)Y

P
− q
)︂

(2.47)

= p(1− s)Y − qP (2.48)

= ̃︀pP1−κKκ − qP (2.49)

where ̃︀p = (1− s)ap and labor force L is assumed to be proportional to population size P. For a

constant capital stock K the population dynamics given by equation (2.49) is qualitatively the

same as that of the capital dynamics in the Solow model for constant labor force L (Equation

(2.36)). As long as there is no accumulation of capital population will remain at a constant

equilibrium value.

1 The fraction 1− s might be close to one in the agricultural societies described by Malthus, meaning that all
produced goods are more or less directly consumed. In other words, the resources in these societies are so
scarce that saving is not possible, giving a savings ratio s ≈ 0.
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Even though the Malthus model might be an aid in explaining the long period of constant

population levels throughout human history, it definitely broke down with the ascent of the

industrial revolution which was accompanied by an acceleration in population growth and

simultaneously increasing levels of wellbeing reflected by per-capita incomes [103, Ch. 4].

Moreover, with higher income levels, both fertility and mortality are observed to decrease

which is referred to as the fertility and mortality transition, respectively [103, Ch. 4]. These

findings are combined in the empirical demographic transition model (Figure 2.12). The

explanation of the changes in fertility and mortality are subtle and include many explanatory

factors such as nutrition, education (of women) or health care. Therefore low-dimensional

models might fail in fully capturing the behavior as predicted by the demographic transition

model. In chapter 3.3 an attempt is made to capture the basic effects in a model that uses

wellbeing as the sole proxy for for all these explanatory factors in order to keep the system’s

dimension low.

Figure 2.12: Overview of the demographic transition model which describes the evolution of
fertility and mortality in dependence of the development level of a country or geographical region.
The occurrence and duration of the various stages might differ very much, depending on manifold
socio-economic factors. Figure taken from [75].
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2.3 Concepts from Earth sciences

This section is devoted to the introduction of a concept from Earth science which is relevant for

the model design, the global carbon cycle. It is the main component of the model to reflect

the natural dynamics of the Earth system.

2.3.1 Global carbon cycle

The global carbon cycle is a biogeochemical cycle which is crucial to the functioning of the

Earth system and amongst other factors enables life on the planet. Carbon is present in many

different forms and components of the Earth such as the atmosphere, hydrosphere, biosphere or

geosphere. Typically the carbon of different spheres is categorized into stocks (or pools) which

contain those carbon amounts which play approximately the same role in the cycle. How fine

the distinction of different stocks is, depends on the question posed and timescale of interest.

The same is true for the carbon fluxes which are the flows of carbon between different stocks.

A very common schematic overview of the carbon cycle of the Earth is shown in Figure 2.13.

All carbon in the atmosphere is typically considered as one stock because the mixing between

different layers and latitudes happens comparably fast (on the timescale of days). As the

Earth is mainly covered with water there is a significant exchange of carbon between the

atmosphere and the oceans via the process of diffusion. The oceanic carbon can be subdivided

into organic and inorganic carbon of which the latter is the dominant amount. It can further

be distinguished between the carbon in the surface layer of the ocean and the carbon in the

intermediate and deep sea. There is a significant exchange between the different layers which

happens on comparably long timescales. Thus the surface layer carbon stock is the only which

interacts with other (non-oceanic) components of the carbon cycle. The next important carbon

stock is given by the terrestrial systems which constitute of living vegetation and soils. From

both vegetation and soils there is a carbon flux into the atmosphere due to the process of

respiration. Photosynthesis of plants in turn constitutes a flow from the atmosphere to the

terrestrial systems which is of comparable size under pre-industrial conditions.

There are other carbon stocks like the permafrost soils or fossil fuels which under natural

conditions only play a role on very long timescales. Due to the extraction of fossil fuels through

humans since the onset of the industrial era, this stock became connected to other parts of the

carbon cycle even for short timescales. Since then it has been decreased considerably, thereby

exerting a significant perturbation to the natural operating state of the carbon cycle. The

extracted carbon from fossil fuels is initially emitted completely into the atmosphere so that the

atmospheric carbon content rose considerably over the past centuries and decades. This is the

main driver of the anthropogenic greenhouse effect which leads to climate change. However,

only the airborne fraction of about 60% of the emitted carbon stays in the atmosphere while
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Figure 2.13: Schematic overview of the global carbon cycle. Atmosphere, oceans and terrestrial
systems together with the processes of photosynthesis, respiration and diffusion are the most
important features of the natural (pre-industrial) operating state (black numbers). The combustion
of fossil fuels and land use change through humans constitute a significant perturbation to this state,
thereby leading to undesirable effects like climate change and ocean acidification (red numbers).
1 PgC = 1 GtC. Figure taken from [17].

the remaining amount is taken up by the maritime and terrestrial systems to a comparable

size [30]. Thus due to the diffusion process the oceanic carbon considerably increased due to

humans. Also the terrestrial systems serve as a carbon sink as the efficiency of photosynthesis

increases with atmospheric carbon content. This effect is referred to as carbon fertilization. It

is counteracted by the agricultural activities of humans which are subsumed as net land use

change and also constitute a substantial perturbation to the natural operating mode of the

carbon cycle.



40 2 Methodological Preliminaries and Concepts

The situation becomes even more involved if the feedbacks between climate change and the

carbon cycle are accounted for. This is due to the facts that the processes of photosynthesis,

respiration and diffusion are dependent on the surface temperature [58]. Fully understanding

and quantifying these feedback mechanisms is still subject to research in climate science [21,

30, 56].

Finally there are several carbon fluxes which are of negligible size such as freshwater outgas-

ing, rock weathering, rivers or volcanism. Such irregular events as extreme volcano eruptions

might, however, be of importance when interested in short timescales.



CHAPTER 3

Model description

This chapter introduces all details on the model copan:GLOBAL (c:G) which are relevant for

the analyses performed within the scope of this thesis. The first section gives an overview of the

complete seven-dimensional model. The structure of the model and the general functional

forms describing the processes have been developed prior to this thesis within the copan project

as described in an internal report available from PIK [44].

Part of the present work was to identify and analyze in depth a number of meaningful subsets

of the variables and processes which correspond to self-contained submodels representing

the dynamics of the Earth system during a real or fictitious period of its history. Thus the

following sections are dedicated to the detailed description of lower-dimensional submodels

of c:G with explicitly stating the governing equations. Additional assumptions on the scenarios

described by these lead to a reduction in complexity, dimension and number of parameters of

the model.

The final section of this chapter introduces a dimensionless formulation of the model

equations which will be used for simulations and the presentation of the results.

3.1 Overview of the complete model (c:G)

The c:G model aims at describing the dynamics of globally aggregated (extensive) or averaged

(intensive) key quantities of the Earth system on centennial to millennial timescales. It tries

to incorporate the essential processes which determine the dynamics of the Earth system on

a global scale. Several existing models have been used as a basis or source of inspiration for

the construction of the complete c:G model. A schematic overview of its structure is given in

Figure 3.1.

The left part corresponds to the natural (or climatic) subsystem of the Earth which is

represented via the main parts of the global carbon cycle introduced in section 2.3.1. The state

41
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Figure 3.1: Overview of the complete copan:GLOBAL model with seven state variables (colored
boxes) and several derived variables (white boxes). The arrows represent the coupling processes
between the variables. The left part corresponds to the natural subsystem of the Earth (ecosphere)
while the right part represents socio-economic entities (anthroposphere). Diagram adapted from
[44].

of the natural subsystem is given by the state variables terrestrial carbon stock L, atmospheric

carbon stock A, geological carbon stock G (all measured in gigatons carbon, GtC) and global

mean surface temperature T . The maritime carbon stock M is a derived variable since it is

assumed that the total available carbon stock C∗ is constant over time.

The arrows between the boxes indicate the several processes by which the variables interact.

Carbon from the atmosphere can be accumulated in the terrestrial stock via photosynthesis of

plants whose efficiency is dependent on the temperature. The counter-acting process is the

temperature-dependent respiration. Similarly carbon is exchanged between the atmosphere

and the oceans via the process of diffusion. There is no direct process between the geological

and the other carbon stocks as the generation of fossil fuels from terrestrial carbon happens on
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time scales much longer than those of interest. This means that the geological stock cannot

increase with time in the model and must thus converge to either zero or a positive value.

The mean surface temperature of the Earth is connected to the atmospheric carbon stock via

the greenhouse effect. This in turn is additionally affected by the albedo of the Earth surface

which can be calculated from the land carbon stock (forests are darker than desert).

The right part of Figure 3.1 shows the variables and processes of the socio-economic part

of the Earth system with humans. The economic activity of the humans is basically given by a

macroeconomic growth model as described in section 2.2.1. The total economic output Y is

derived from the production factors labor (i.e. human population P), physical capital K and

resources (i.e. total energy use E). This total output in turn is partly consumed by the humans

and partly reinvested into the physical capital stock. How exactly the production factors are

allocated is determined by an underlying general equilibrium model (see section 2.2.2) that is

designed in a way that leads to relatively simple functional relationships between the variables.

The use of energy by humans is supposed to be the central coupling mechanism between the

natural and the human system. There are three forms of energy flows: the biomass extraction

flow B (including agricultural food and biofuel production), the fossil fuel extraction flow F

and the renewable energy flow R which are all derived from other variables. Each of these is

directly linked to a stock variable which determines the availability of the respective form (land

carbon L for biomass, geological carbon G for fossil fuels and renewable technology knowledge

stock S for renewables). The energy forms differ qualitatively regarding their influence on other

variables. Both biomass and fossil fuel use cause emissions of carbon into the atmosphere while

renewable energy does not. Biomass is harvested from the terrestrial carbon stock which can

be seen as a renewable resource. The fossil fuels in contrast are extracted from the geological

stock which is not renewable on the timescales the model aims to describe. The renewable

energy use is fundamentally different from the other in the sense that the related stock variable

S increases with its use instead of being decreased like a resource. This “learning-by-doing”

mechanism is counter-acted by a natural unlearning rate.

The population dynamics constitute another important element of the model. They are

given by a birth rate which has a certain dependence on the wellbeing W of the population

and a death rate which is sensitive to wellbeing and competition for space. The wellbeing is

composed of per-capita consumption and ecosystem services. The dynamics of the physical

capital stock are governed by the processes of investment and depreciation.

Finally the c:G model accounts for climate impacts mediated by rising global mean tempera-

tures. These are assumed to affect the population dynamics (increased death rate) and the

physical capital stock (increased depreciation) and thereby introduce another feedback loop

between the natural and the socio-economic subsystems.
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3.2 Planet without humans (c:G:LAT, c:G:LA, c:G:LT, c:G:L)

As a first scenario which can be described by a submodel of c:G we consider a planet without

human or negligible human impact. This is supposed to reflect the natural dynamics of the

Earth system in Holocene epoch which started some 11700 years ago after the last glacial,

however, excluding the “human factor” that became important shortly after that point due to

the consequences of the neolithic revolution.

Thus the dynamics is reflected by the global carbon cycle component of the complete model.

The dynamic state variables are the terrestrial carbon stock L, the atmospheric carbon stock

A and the global mean temperature T . The maritime carbon stock M is derived from the

latter two. The geological carbon stock G is not regarded in this context since there are no

humans burning fossil fuels. A schematic overview of this three-dimensional submodel which

is abbreviated c:G:LAT is shown in Figure 3.2 (left).
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Figure 3.2: Left: Schematic overview of the carbon cycle submodel c:G:LAT with the three state
variables terrestrial carbon stock L, atmospheric carbon stock A and temperature T . The maritime
carbon stock M follows from a fixed total available carbon stock C∗PI (without geological carbon
stock).
Right: If the greenhouse effect and diffusion are assumed to happen instantaneously, temperature
and atmospheric carbon become derived variables. Thus one obtains the one-dimensional submodel
c:G:L.
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3.2.1 Functional forms of the dynamics

Taking into account the processes depicted in the schematic overview the dynamic equations

for the carbon stocks L and A may be written in the following general form:

L̇ = fphot(L,A,T )− fresp(L,T ) (3.1)

Ȧ= − fphot(L,A,T ) + fresp(L,T ) + fdiff(A,M) (3.2)

where: M = M(L,A) (3.3)

Photosynthesis fphot and respiration fresp are both proportional to the total amount of veg-

etation, which in turn is assumed to be proportional to L. Furthermore the processes are

temperature-dependent. Anderies et al. use comparably complicated products of powers

and exponential functions to describe this temperature-dependence [2]. However, for the

temperature regime of interest one finds that while photosynthesis efficiency is monotonically

decreasing with T , respiration efficiency monotonically increases with T . For simplicity linear

dependencies are assumed here.

In addition one needs to account for the effect of carbon fertilization. This means an

improved photosynthesis efficiency for higher concentrations of atmospheric carbon. The

efficiency is concavely increasing with A which is modeled by a square root dependence.

Altogether this leads to the following equations:

fresp(L,T ) = L(a0 + aT T ) (3.4)

fphot(L,T,A) = L(l0 − lT T )
√︀

A/Σ (3.5)

where a0, aT , l0 and lT are non-negative parameters. Σ denotes the available Earth surface

area and is introduced to guarantee the correct scaling behavior of the dynamical system, so

that if the planet was doubled, also the photosynthesis flow would be doubled. Mathematically

spoken the functions are homogeneous of degree one.

The diffusion between the atmosphere and the ocean is described equivalently to the Anderies

model via a simple linear relationship.

fdiff(A,M(L,A)) = δ (M −mA) (3.6)

where δ sets the diffusion rate and m is the dimensionless solubility coefficient which reflects

the equilibrium ratio of carbon concentrations between atmosphere and oceans. The maritime

carbon stock M is a derived variable given the constant total pre-industrial available carbon
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stock C∗PI:

M = C∗PI − L − A (3.7)

The dynamic equation for the global mean temperature T can be written in the following

general form:

Ṫ = fgreenh(A,T,Ω(L)) (3.8)

where Ω denotes the albedo of the planet. It is an intensive quantity which is assumed to

decrease linearly with the vegetation cover:

Ω(L) = Ω0 −
ωL

Σ
L (3.9)

The greenhouse effect is assumed to be linearly increasing with the excess of atmospheric

carbon concentration and decreasing with albedo due to reflection. This can be expressed in

the following explicit equation:

fgreenh(A,T,Ω(L)) = g
(︂

1
Σ

A− T −Ω
)︂

= g
(︂

1
Σ

A− T +
ωL

Σ
L −Ω0

)︂
(3.10)

where g denotes a rate which sets the timescale of the process. For convenience T is measured

on a non-linear scale in units of GtC km−2.1

1 The unit can be interpreted as “carbon per area equivalent degrees”. I. e. T = x GtC km−2 is the thermodynamic
equilibrium temperature of an atmosphere with a carbon concentration of x GtCkm−2 at zero albedo.
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Putting the functional forms for the several processes into the dynamic equations for the

state variables leads to the following system of differential equations:

c:G:LAT

L̇ = L
(︁
(l0 − lT T )

√︀
A/Σ− (a0 + aT T )

)︁
(3.11)

Ȧ= − L̇ +δ (M −mA) (3.12)

Ṫ = g
(︂

1
Σ

A− T +
ωL

Σ
L −Ω0

)︂
(3.13)

where: M = C∗PI − L − A (3.14)

3.2.2 Overview of variables and parameters

The model has several free parameters which need to be set for quantitative calculations and

simulations. These are shown together with all state and derived variables in Table 3.1.

Table 3.1: Overview of the variables and free parameters of the c:G:LAT model which describes
the essential dynamics of the natural subsystem of the Earth via the global carbon cycle.

variable unit range description

L GtC 0≤ L ≤ C∗ terrestrial carbon stock
A GtC 0≤ A≤ C∗ atmospheric carbon stock
T GtCkm−2 0≤ T ≤ C∗/Σ global mean surface temperature
M GtC 0≤ M ≤ C∗ maritime carbon stock
parameter unit range description

Σ km2 > 0 available Earth surface area
C∗PI GtC > 0 total pre-industrial carbon stock
a0 a−1 ≥ 0 respiration baseline coefficient
aT km2 a−1 GtC−1 ≥ 0 respiration sensitivity to temperature
l0 kma−1 GtC−1/2 ≥ 0 photosynthesis baseline coefficient
lT km3 a−1 GtC−3/2 ≥ 0 photosynthesis sensitivity to temperature
δ a−1 > 0 diffusion rate
m 1 > 0 solubility coefficient
g a−1 > 0 speed of greenhouse effect
Ω0 GtCkm−2 ≥ 0 albedo at zero vegetation
ωL 1 ≥ 0 albedo sensitivity to terrestrial carbon

3.2.3 Dimension reduction and further simplification

Equations (3.11), (3.12) and (3.13) define the three-dimensional submodel of the natural

subsystem of the Earth. The dimension of this model can be reduced if one assumes the process
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of diffusion or the greenhouse effect to occur instantaneously.

An instantaneous diffusion corresponds to the limit δ→ +∞ in which equation (3.6) can

be rewritten as the algebraic identitiy:

M = mA (3.15)

Plugging this into the mass conservation law L + A+M = C∗PI gives a fixed relation between

the terrestrial and the atmospheric carbon stocks:

L = C∗PI − (1+m)A ⇔ A=
C∗PI − L

1+m
(3.16)

These relations can be used to either eliminate L or A in the dynamic equations of the model,

leading to a two-dimensional model. For example, if one eliminates A in equation (3.11) one

gets the two-dimensional system which is abbreviated c:G:LT:

c:G:LT

L̇ = L

(︃
(l0 − lT T )

√︃
C∗PI − L
Σ(1+m)

− (a0 + aT T )

)︃
(3.17)

Ṫ = g
(︂

C∗PI − L

Σ(1+m)
− T +

ωL

Σ
L −Ω0

)︂
(3.18)

Similarly one may assume the greenhouse effect to happen instantaneously which corre-

sponds to letting g → +∞. In this case equation (3.10) becomes an algebraic identity:

T =
1
Σ

A+
ωL

Σ
L −Ω0 (3.19)

Using this expression for T in equations (3.11) and (3.12) leads to the following two-dimensional

system which is abbreviated c:G:LA:

c:G:LA

L̇ = L

[︃(︂
l0 − lT

(︂
1
Σ

A+
ωL

Σ
L −Ω0

)︂)︂√︂
1
Σ

A−
(︂

a0 + aT

(︂
1
Σ

A+
ωL

Σ
L −Ω0

)︂)︂]︃
(3.20)

Ȧ= − L̇ +δ (M −mA) (3.21)
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Another assumption which does not lead to a reduction of the dimension but to a reasonable

simplification of the equations is to neglect the albedo effect on the greenhouse process by

simply setting Ω = 0 in (3.10). In that case the dynamic equation for the temperature becomes:

Ṫ = g
(︂

1
Σ

A− T
)︂

(3.22)

For the case of instantaneous greenhouse effect the algebraic identity (3.19) reads as follows:

T =
1
Σ

A (3.23)

If not stated otherwise, for the rest of this thesis the albedo effect is neglected and thus Ω0 and

ωL are set to zero. The legitimation for this approximation is discussed in section 6.2.

The assumptions and simplifications presented above can be combined at will. For example,

if all of them hold, the model reduces to the one-dimensional c:G:L model whose structure is

shown in Figure 3.2 (right):

c:G:L

L̇ = L

[︃(︂
l0 −

lT (C∗PI − L)
Σ(1+m)

)︂√︃
C∗PI − L
Σ(1+m)

−
(︂

a0 +
aT (C∗PI − L)
Σ(1+m)

)︂]︃
(3.24)

It should be emphasized at this point already that depending on the assumptions the asymp-

totic behavior of the system might change. The positions of the equilibria (if such exist) are,

however, not influenced by making a process instantaneous, only their stabilities might be.

Moreover the same simplifications can be made for any of the following more complex

submodels, meaning that the dimension of the model can be reduced independently from the

socio-economic system.
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3.3 Hunter-gatherer and agricultural societies (c:G:LATP, c:G:LAP, c:G:LTP,

c:G:LP)

The next scenario also accounts for humans interacting with the natural Earth system and thus

depicts a minimal coevolutionary submodel of the ecosphere and the anthroposhere. For

this the c:G:LAT model described in the previous section is extended by a state variable for the

human population (P) and is thus abbreviated c:G:LATP (see Figure 3.3).

The population P interacts with the natural system by harvesting biomass from the terrestrial

carbon stock L which is consumed and ultimately emitted as carbon into the atmosphere A.

The availability of biomass determines the wellbeing W of mankind which in turn governs the

reproductivity of the human species. Accumulation of physical capital besides a fixed capital

per person is not regarded in this scenario.

With respect to the Earth history this submodel might correspond to a hunter-gatherer

or agricultural society as the energy demand is solely satisfied by biomass and there is no

accumulation of physical capital. Thus it might be valid for period before the onset of substantial

capital accumulation due to the agricultural revolution after roughly 1500 AD. Additionally the

results gathered from this submodel could be interpreted as representing alternative histories

in which capital accumulation and fossil fuels have never been introduced into the economic

system.

3.3.1 Functional forms of the dynamics

In order to obtain the governing equations of c:G:LATP the schematic from Figure 3.3 can be

translated into the following general form:

L̇ = fphot(L,T,A)− fresp(L,T )− fharv(B) (3.25)

Ȧ= − fphot(L,T,A) + fresp(L,T ) + fdiff(A,M) + femis(B) (3.26)

Ṫ = fgreenh(A,T,Ω(L)) (3.27)

Ṗ = P( ffert(W )− fmort(T,P,W )) (3.28)

where: M = M(L,A) (3.29)

B = B(L,P,K) (3.30)

W =W (L,P,Y ) (3.31)

Y = Y (P,K ,B) (3.32)

K = K(P) (3.33)

The temperature evolution Ṫ and the processes of photosynthesis fphot and respiration fresp

are identically modeled as described in section 3.2.
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Figure 3.3: Overview of the minimal co-evolutionary submodel c:G:LATP which models a global
hunter-gatherer or agricultural society without capital accumulation. The carbon cycle model
is extended by a human population stock P which affects the natural subsystem by harvesting
biomass B and emitting carbon into the atmosphere. The wellbeing W determines the reproduction
dynamics of the humans. The physical capital stock K is derived from a fixed capital amount per
person.

As already mentioned the carbon content of the harvested biomass is assumed to be completely

emitted into the atmosphere on rather short timescales.1 Hence the terms for harvesting and

emissions are identical and equal to the biomass use B.

fharv(B) = femis(B) = B(L,P,K) (3.34)

The biomass use B is ultimately determined by the general equilibrium model which is part of

the complete c:G model and has been introduced in section 2.2.2. In this case the biomass sector

1 The forms of biomass use are mainly nutrition, building materials and firewood. Through the processes of
respiration, rotting and combustion almost the complete carbon from the biomass is released to the atmosphere
on rather short time scales. The carbon amount which goes into soils remains in the terrestrial stock (consisting
of both vegetation and soils) and is thus not included in the harvesting term B.
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is the only economic sector. The output function B has a Cobb-Douglas form with constant

returns to scale:

B =
1
eB

X
1
5
B P

2
5 K

2
5 N−

1
5 (3.35)

where eB is the energy density of biomass (measured in GJ/GtC), XB is the “energy availability”

of biomass and N ≥ 1 reflects the degree of fragmentation of the global economic system.1

The auxiliary quantity XB is calculated from the terrestrial carbon stock:

XB = aB L2 (3.36)

The physical capital stock K in this scenario is assumed to be directly proportional to the

population. Each person has (on average) a fixed capital amount kP , thus:

K = kP P (3.37)

Finally the degree of fragmentation N is assumed to be proportional to the total population P.

This is motivated by the idea that the hunter-gatherer or agricultural communities described by

this scenario have (on average) the same size n−1
P :

N = nP P (3.38)

Plugging equations (3.36), (3.37) and (3.38) into the general form (3.35) one obtains:

B =
a

1
5
B k

2
5
P

eBn
1
5
P

L
2
5 P

3
5 (3.39)

= bL
2
5 P

3
5 (3.40)

where in the second step the auxiliary parameter b = a
1
5
B k

2
5
P e−1

B n
− 1

5
P is introduced. The right

hand side of equation (3.40) is very similar to a comparable term in the renewable resource

use model of Brander and Taylor [15] where the resource use is given as:

BBT = bLP (3.41)

1 N = 1 means one global perfectly interconnected economic system while N = 100 would mean a fragmentation
into 100 independent sub-economies.
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However, in the c:G model B(L,P,K ,N) is a homogeneous function of degree one, meaning that

if all extensive input quantities (L, P, K , N) are multiplied by some factor α, also the output

B is multiplied by α as it is an extensive quantity. Equation (3.41) in contrast implies that a

doubling of L and P would result in a fourfold renewable use BBT which is not realistic.

The next extension compared to the c:G:LAT model is the additional equation (3.28) which

governs the dynamics of the population P (measured in the unit “humans” H). It consists of

the processes of reproduction and death which are both proportional to the total population.

Like in ecological models for population growth of non-human species, fertility ffert is assumed

to increase linearly with wellbeing for very low values of W accounting for the basic nutritional

needs for reproduction. After the birth rate reaches a maximum value p at a wellbeing of Wp it

is assumed to decrease inversely proportional to W due to wealth and education effects. This

dependence can be expressed as follows:

ffert =
2pWWp

W 2 +W 2
p

(3.42)

Mortality fmort is composed of a natural death rate which is assumed to decrease inversely

proportional to W but increases linearly with T due to potential climate impacts. In addition

to this there is a term which accounts for competition for space, somewhat similar to a logistic

growth model, which constitutes a natural limit against overpopulation of the planet.

fmort =
(q0 + qT T )

W
+

qP P
Σ

(3.43)

The shapes of both fertility and mortality functions are shown in Figure 3.4.

The upper limit on population posed by the competition term, P+ can be calculated analyti-

cally. For this one needs maximize the difference between fertility and mortality without the

competition term with respect to W , setting it equal to the competition term and solve for P.

The wellbeing W+ at which the difference between natural fertility and mortality (without

competition term) are maximal is given as follows:

W+ =Wp

⎯⎸⎸⎸⎷ pWp + q0

2pWp − q0
+

⎯⎸⎸⎷(︃ pWp + q0

2pWp − q0

)︃2

+
q0

2pWp − q0
(3.44)
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Setting equal (3.42) and (3.43) at W+ and solving for P gives the upper limit to population:

P+ =
Σ

qP

(︃
2pWpW+

W+2 +W 2
p
−

q0

W+

)︃
(3.45)
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Figure 3.4: Qualitative dependence of fertility and mortality (without the competition term) on
wellbeing W . Parameters: p = 0.04, q0 = 0.01, Wp = 1, qT = 0, qP = 0.

It remains to choose a functional form for the wellbeing W =W (L,P,Y ). It is assumed to be

composed of per capita consumption Y /P and ecosystem services (such as biodiversity and

recreational and aesthetic aspects) which are modeled proportional to the spatial density of

available terrestrial carbon L/Σ. 1

W =
Y
P
+

wL

Σ
L (3.46)

where wL is a parameter which appraises the relative weighting of ecosystem services compared

to consumption.

The general equilibrium model makes the assumption that the total energy use E sets an upper

limit on the total economic output Y (measured in $/a). Therefore Y is directly proportional

to E. As in this scenario biomass is the only form of energy used, E = eBB holds, which gives,

1 The wellbeing contributions derived from consumption and ecosystem services are here assumed to be perfect
substitutes which is probably not true but sufficient for investigating the qualitative effects.
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using equation (3.40):

Y = yE E (3.47)

= yEeBB (3.48)

= yB bL
2
5 P

3
5 (3.49)

where yE and yB = yEeB are parameters linking energy and biomass use to economic output in

monetary units.

Putting together all functional forms and considerations made above, the c:G:LATP model is

described by the following system of differential equations:

c:G:LATP

L̇ = L
(︁
(l0 − lT T )

√︀
A/Σ− (a0 + aT T )

)︁
− B (3.50)

Ȧ= − L̇ +δ (M −mA) (3.51)

Ṫ = g
(︂

1
Σ

A− T +
ωL

Σ
L −Ω0

)︂
(3.52)

Ṗ = P

(︃
2pWWp

W 2 +W 2
p
−

q0 + qT T
W

−
qP P
Σ

)︃
(3.53)

where: M = C∗PI − L − A (3.54)

B = bL
2
5 P

3
5 (3.55)

W = yB
B
P
+

wL

Σ
L (3.56)
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3.3.2 Overview of variables and parameters

The additional variables and parameters of the c:G:LATP model compared to c:G:LAT (Table

3.1) are shown in Table 3.2.

Table 3.2: Overview of the additional variables and free parameters of the coevolutionary c:G:LATP
model which describes hunter-gatherer and agricultural societies.

variable unit range description

P H 0≤ P human population stock
K $ 0≤ K physical capital stock
B GtCa−1 0≤ B biomass harvesting flow
W $ H−1a−1 0≤W wellbeing flow
Y $a−1 0≤ Y total economic output flow
parameter unit range description

p a−1 > 0 fertility rate maximum
Wp $a−1 H−1 > 0 fertility saturation wellbeing
q0 $a−2 H−1 ≥ 0 mortality baseline coefficient
qT km2 $a−2 H−1GtC−1 ≥ 0 mortality sensitivity to temperature
qP km2a−1H−1 ≥ 0 mortality sensitivity to population density
b GtC3/5 a−1 H−3/5 ≥ 0 biomass harvesting rate
yB $GtC−1 ≥ 0 economic output per biomass input
wL $km2 GtC−1 a−1 H−1 ≥ 0 wellbeing sensitivity to land carbon
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3.4 Industrial societies (c:G:LAGTPK, c:G:LAGPK, c:G:LGTPK, c:G:LGPK)

Historically the non-capitalistic agricultural societies of the middle age were followed by

technical revolutions which made physical capital a replacement for labor force in the economic

production and later on the industrial revolution starting roughly around 1750 which was

accompanied by the advent of fossil fuels. The submodel which aims at describing this period

of the human history therefore includes a physical capital stock K as state variable and allows

the use of fossil fuels F which are extracted from a geological carbon stock G (see Figure 3.5).

This “industrialization scenario” is abbreviated c:G:LAGTPK and is a six-dimensional submodel

of c:G.
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Figure 3.5: Overview of c:G:LAGTPK submodel which corresponds to industrial societies. The
pre-industrial model versions are extended by a geological carbon stock G. From this fossil fuels F
can be extracted which lead to additional emissions of carbon into the atmosphere. Moreover a
physical capital stock K as independent production factor is added which grows due to investments.
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3.4.1 Functional forms of the dynamics

Again the general form of the model equations can be extracted from the diagram in Figure 3.5.

L̇ = fphot(L,T,A)− fresp(L,T )− fharv(B) (3.57)

Ȧ= − fphot(L,T,A) + fresp(L,T ) + fdiff(A,M) + femis(B,F) (3.58)

Ġ = − fextr(F) (3.59)

Ṫ = fgreenh(A,T,Ω(L)) (3.60)

Ṗ = P( ffert(W )− fmort(T,P,W )) (3.61)

K̇ = finv(Y )− fdepr(K ,T ) (3.62)

where: M = M(L,A,G) (3.63)

B = B(L,G,P,K) (3.64)

F = F(L,G,P,K) (3.65)

W =W (L,P,Y ) (3.66)

Y = Y (P,K ,B,F) (3.67)

The first extension to the c:G:LATP submodel is the additional geological carbon pool G

which can only be decreased by the use of fossil fuels. The extraction function is given by:

fextr(F) = F(L,G,P,K) (3.68)

The carbon contained in fossil fuels is emitted almost immediately into the atmosphere through

the process of combustion. Thus the emission process is given by:

femis(B,F) = fharv(B) + fextr(F) = B + F (3.69)

It is important to note that the total available carbon stock C∗ > C∗PI is enlarged by the initial

size of the carbon pool G(t = 0). The maritime carbon M is derived from the three other

carbon pools:

M = C∗ − L − A− G (3.70)

Biomass use B and fossil fuel use F are determined by the general equilibrium model. The

economy in this case consists of two competing sectors, the biomass and the fossil sector. Thus

the availability of biomass has a negative effect on fossil use and vice versa.
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Similar to equation (3.35) the total energy use E is of Cobb-Douglas form:

E = X
1
5 P

2
5 K

2
5 N−

1
5 (3.71)

where X = XB + XF is the total “energy availability” given by the sum of biomass and fossil

availabilities. While the biomass availability is given by equation (3.36), XF is determined by

the geological carbon stock:

XF = aF G2 (3.72)

As the total energy use is the sum of biomass energy and fossil energy use E must fulfill:

E = eBB + eF F (3.73)

where eB and eF are the energy densities of biomass and fossil fuels, respectively. Together

with equation (3.71) one can conclude for the individual carbon use flows:

B =
1
eB

XB

X
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P
2
5 K
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5 N−

1
5 =

aB

eB

L2P
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4
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(3.74)

F =
1
eF

XF

X
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2
5 K

2
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1
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5
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4
5

(3.75)

In contrast to the pre-industrial societies described by the previous submodels the economic

system in the industrialized scenario is assumed to be not fragmented at all, so that subsequently

N = 1 is assumed.

The physical capital stock K in this scenario is a state variable which is increased by the

process of investment and decreased through depreciation. Assuming that a fixed share i of

the total economic output Y is invested gives:

finv(Y ) = iY (3.76)

The depreciation rate is assumed to be composed of a natural baseline coefficient k0 and a part

which increases linearly with temperature T due to climate impacts:

fdepr = (k0 + kT T )K (3.77)

As now a certain share i of Y is invested, only the remainder of (1 − i)Y is available for

consumption and thus the first term of the wellbeing function (3.46) is slightly changed.
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Altogether the considerations above lead to the following system of differential equations for

the c:G:LAGTPK submodel:

c:G:LAGTPK

L̇ = L
(︁
(l0 − lT T )

√︀
A/Σ− (a0 + aT T )

)︁
− B (3.78)

Ȧ= − L̇ +δ (M −mA) (3.79)

Ġ = −F (3.80)

Ṫ = g
(︂

1
Σ

A− T +
ωL

Σ
L −Ω0

)︂
(3.81)

Ṗ = P

(︃
2pWWp

W 2 +W 2
p
−

q0 + qT T
W

−
qP P
Σ

)︃
(3.82)

K̇ = iY − (k0 + kT T )K (3.83)

where: M = C∗ − L − A− G (3.84)
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(3.85)

F =
aF

eF

G2P
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5 K

2
5

(aB L2 + aF G2)
4
5

(3.86)

W =
(1− i)Y

P
+

wL

Σ
L (3.87)

Y = yE E = yE(eBB + eF F) (3.88)

Further submodels

Even if instantaneous greenhouse effect and diffusion are assumed (see section 3.2.3) the

submodel for the industrialization scenario (c:G:LGPK) is four-dimensional and hence hard to

analyze by graphical means like portraits of the phase space. Thus it is instructive to reduce

the dimension further in order to obtain three-dimensional submodels.

A scenario in which only capital accumulation is considered but biomass is still the only

form of energy used might correspond to capitalistic agricultural societies. Technically this is

achieved by ignoring the geological carbon stock G in equations (3.78) to (3.88) or, equivalently,

setting aF = 0. This model version is denoted by c:G:LPK.

Alternatively one might think of fictitious societies which makes use of fossil fuels (such

as lignite) but do not accumulate physical capital to do so. The governing equations can be

derived from those of the industrial scenario by assuming a constant per-capita capital as in
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(3.37). This model version is denoted by c:G:LGP but is not analyzed within the context of this

thesis.

3.4.2 Overview of variables and parameters

The additional variables and parameters of the c:G:LAGTPK model compared to c:G:LAT and

c:G:LATP (Tables 3.1 and 3.2) are shown in Table 3.3.

Table 3.3: Overview of the additional variables and free parameters of the c:G:LAGTPK model
which describes a scenario of industrialized societies.

variable unit range description

G GtC 0≤ G ≤ C∗ geological carbon stock
K $ 0≤ K physical capital stock
F GtCa−1 0≤ F fossil fuel extraction flow
parameter unit range description

C∗ GtC > 0 total available carbon stock
yE $ GJ−1 > 0 economic output per energy input
aB GJ5a−5GtC−2$−2H−2 > 0 biomass sector productivity
aF GJ5a−5GtC−2$−2H−2 > 0 fossil fuel sector productivity
eB GJGtC−1 > 0 biomass energy density
eF GJGtC−1 > 0 fossil fuel energy density
i 1 0< i < 1 investment ratio
k0 a−1 > 0 capital depreciation rate
kT km2 a−1GtC−1 ≥ 0 capital depreciation

sensitivity to temperature

3.5 Dimensionless formulation

As the variables and parameters are of diverse physical dimensions and expected be of unlike

orders of magnitude it is instructive to introduce a dimensionless version of the governing

equations. This will be used during simulations to preclude numerical issues as well as to

present the results. For each variable and parameter a non-dimensional version is introduced

which will be decorated with a hat ( x̂) to be distinguishable from the dimensional value.

The theoretical foundation for the “non-dimensionalization” of the equations is given by

the Buckingham Π-Theorem [9]. It states that a physical system described by N physcial

quantities which feature D independent physical dimensions can be described by P = N − D

dimensionless physical quantities.

Practically one can choose D parameters whose dimensions include all of the independent

dimensions present in the system and set them to 1. The other parameters’ and variables’

dimensions can then be expressed in terms of those “reference parameters”.

The dimensionless formulation of the model equation is subsequently done for the c:G:LAGTPK
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model but meanwhile the same definitions hold for all other submodels. As an exception a

slightly different dimensionless formulation is introduced for the c:G:LATP model as it involves

the auxiliary parameter b (see appendix A.1).

The physical quantities of the model variables involve six independent physical dimensions

(GtC, km, a, H, $, GJ). Therefore the number of free parameters can be reduced by six according

to the BuckinghamΠ-Theorem. The parameters C∗, Σ, δ, Wp, yE and eB are chosen as reference

parameters which are set to 1.1 Using these the following non-dimensional variables are defined:

t̂ = δt (3.89)

L̂ =
L

C∗
(3.90)

Â=
A
C∗

(3.91)

Ĝ =
G
C∗

(3.92)

T̂ =
TΣ
C∗

(3.93)

P̂ =
PWp

C∗δ yeB
(3.94)

K̂ =
K

C∗ yeB
(3.95)

M̂ =
M
C∗

(3.96)

B̂ =
B

C∗δ
(3.97)

F̂ =
F

C∗δ
(3.98)

Ŵ =
W
Wp

(3.99)

Ŷ =
Y

C∗δ yeB
(3.100)

1 Those model versions with instantaneous diffusion effectively assume δ = +∞. Their dimensionless quantities
are, however, scaled with respect to the estimated value of δ given in Table 4.3. Therefore in this case the
number of model parameters is not reduced by the scaling of the time.
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Plugging these into the dimensional equations (3.78) to (3.88) leads to the following non-

dimensional equations:

c:G:LAGTPK dimensionless

˙̂L = L̂
(︁
(l̂0 − l̂T T̂ )

√︀
Â− (â0 + âT T̂ )

)︁
− B̂ (3.101)

˙̂A= −˙̂L +
(︀
M̂ −mÂ

)︀
(3.102)

˙̂G = −F̂ (3.103)

˙̂T = ĝ
(︀
Â− T̂

)︀
(3.104)

˙̂P = P̂
(︂

2p̂Ŵ
1+ Ŵ 2

−
q̂0 + q̂T T̂

Ŵ
− q̂P P̂

)︂
(3.105)

˙̂K = iŶ − (k̂0 + k̂T T̂ )K̂ (3.106)

where: M̂ = 1− L̂ − Â− Ĝ (3.107)

B̂ =
âB

1
5 L̂2 P̂

2
5 K̂

2
5

(L̂2 + âF Ĝ2)
4
5

(3.108)

F̂ =
âB

1
5 âF Ĝ2 P̂

2
5 K̂

2
5

êF (L̂2 + âF Ĝ2)
4
5

(3.109)

Ŵ =
(1− i)Ŷ

P̂
+ ŵL L̂ (3.110)

Ŷ = Ê = B̂ + F̂ (3.111)
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These have now 15 non-dimensional instead of 21 dimensional (except for m and i) free

parameters. These are defined as follows:

â0 = a0
1
δ

(3.112)

âT = aT
C∗

δΣ
(3.113)

l̂0 = l0
C∗

1
2

δΣ
1
2

(3.114)

l̂T = lT
C∗

3
2

δΣ
3
2

(3.115)

ĝ = g
1
δ

(3.116)

p̂ = p
1
δ

(3.117)

q̂0 = q0
1
δWp

(3.118)

q̂T = qT
C∗

δΣWp
(3.119)

q̂P = qP
C∗ yeB

ΣWp
(3.120)

k̂0 = k0
1
δ

(3.121)

k̂T = kT
C∗

δΣ
(3.122)

âB = aB
C∗ y4

δ3W 2
p eB

(3.123)

âF =
aF

aB
(3.124)

êF =
eF

eB
(3.125)

ŵL = wL
C∗

ΣWp
(3.126)



CHAPTER 4

Parameter estimation

The model as described in chapter 3 possesses various free parameters which are shown in

Tables 3.1, 3.2 and 3.3. In order to be able to compute trajectories of the variables these need

to be set to reasonable values. As the model is conceptual by nature it is mostly sufficient to

make rough estimates. “Reasonable” thus means that the parameter values are at least in the

right order of magnitude.

For some parameters it turns out to be practically impossible to obtain even rough estimates

as they do not correspond to established quantities for which there are data available. These

will be the primary candidates for variation in bifurcation analyses.

It is worth noting that in order to investigate the qualitative behavior of the system the

absolute values of the scaling parameters introduced in section 3.5 (C∗, Σ, δ, Wp, yE , eB) are

not necessary as they just set the scale of the physical dimensions involved. However, to be able

to compare the results with real world data, also these values should be reasonably estimated.

In analogy to the distinction of the submodels the parameters can be divided into several

categories: those related to the global carbon cycle, those governing the demography of the

society and those related to the economic model components. This chapter is subdivided

according to this classification of the parameters. It closes with an overview Table of all

estimated parameter values in section 4.5.

65
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4.1 Carbon cycle parameters

The parameters of the global carbon cycle model c:G:LAT are listed in Table 3.1.

The available earth surface area Σ can be estimated by the land surface of the earth:

Σ≈ 150 · 106 km2 (4.1)

The parameters C∗, a0, aT , l0, lT , m and δ are calibrated using actually estimated carbon

pools and flows as reported in the latest assessment report of the Working Group I of the IPCC

[17] (see Figure 2.13) in section 2.3.1.1 Table 4.1) shows the values for the relevant stocks

and flows extracted from Figure 2.13. Vegetation and soils are regarded as one terrestrial pool

L. Also the different forms of fossil fuels (gas, oil, coal) are regarded as one geological stock G.

Even though there are relatively high ranges given for LPI and GPI the average values are taken

and assumed to be without uncertainty. The uncertainties given for the changes to the present

values are used to estimate also uncertainties of the parameter values.

Table 4.1: Pre-industrial carbon stocks and flows and changes to present with uncertainties which
are relevant to the c:G model. Numbers are extracted from Figure 2.13 and partly rounded.

parameter pre-industrial change to present

L [GtC] 2500 −20± 45
A [GtC] 600 +240± 10
M [GtC] 900 +155± 30
G [GtC] 1500 −375± 30
fresp [GtCa−1] 107.2 +11.6± 1.22

fphot [GtCa−1] 108.9 +14.1± 1.2
fdiff [GtC a−1] 0.7 −3.0± 0.7

The total available carbon C∗ on the timescales of interest (102 to 103 years) constitutes of

the terrestrial stock L, the atmospheric stock A, the maritime stock M and the geological stock

G. It can be calculated from the preindustrial values for each stock:

C∗ = LPI + API +MPI + GPI = 5500GtC (4.2)

1 Since the c:G:LAT model is very similar to the conceptual carbon cycle model presented in [2] another strategy
would be to adjust the parameters such that the resulting dynamics is comparable to that presented there. This
has been done with the result that it is possible to find parameter values which generate a phase space that is
topologically equivalent to that of the Anderies model. These results however are not shown here because the
Anderies paper is not transparent about the estimation of the parameter values used. The following analysis
thus relies on the direct parameter estimates from the IPCC data.

2 As there are no uncertainties given for the individual flows, the uncertainty estimate of the net flow is assigned
to both the respiration and photosynthesis flow.
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For the preindustrial value C∗PI the geological stock is not regarded:

C∗PI = LPI + API +MPI = 4000 GtC (4.3)

The carbon exchange between land and atmosphere is given by the flows of respiration

fresp and photosynthesis fphot. They are given in the model by equations (3.4) and (3.5).

For simplicity the temperature is estimated via equation (3.23), assuming an instantaneous

greenhouse effect and no albedo, thus:

fresp = L
(︁

a0 +
aT

Σ
A
)︁

(4.4)

fphot = L
(︂

l0 +
lT

Σ
A
)︂√︂

A
Σ

(4.5)

Using the values from Table 4.1 for fresp, fphot, L and A these equations can be written for both

the preindustrial and the present state. By solving these equations the unknown parameters a0,

aT , l0 and lT can be determined. The uncertainties of the parameter values can be estimated

using Gaussian error propagation:

a0 = (0.0298± 0.0026)a−1 (4.6)

aT = (3.2± 0.6) · 103 km2 a−1 GtC−1 (4.7)

l0 = (26.4± 2.4)km a−1 GtC−1/2 (4.8)

lT = (1.1± 0.6) · 106 km3 a−1 GtC−3/2 (4.9)

As one can see the relative uncertainties of parameters that determine the temperature sensitiv-

ity, aT and lT is considerably larger than that of the baseline coefficients a0 and l0 which have

a relative uncertainty of roughly 10%.

The net diffusive flux fdiff from the ocean to the atmosphere is described in the model by

equation (3.6):

fdiff = δ(M −mA)

Again from the preindustrial and present values this equation can be solved for the unknown

parameters inclusive of uncertainties. The estimated values are rounded in order to obtain
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nicer values for the scaling parameter δ and the solubility coefficient m.

δ = (0.016± 0.005)a−1 ≈ 0.01a−1 (4.10)

m= 1.43± 0.02≈ 1.5 (4.11)

The remaining parameters of the c:G:LAT submodel are related to the greenhouse effect (g,

Ω0 and ωL). As the assumption of a negligible albedo effect is made throughout this thesis, Ω0

and ωL are effectively set to zero.

A straight forward estimation of g from climate data or other climate models is not possible as

the greenhouse effect is typically described in a more complex manner or on shorter timescales

(see for instance [58]). A similar functional form to describe the dynamics of the global mean

temperature is used in [48] where the characteristic time of the greenhouse effect is estimated

as τT = 50 a. This corresponds to a value for g of

g = 0.02 a−1 (4.12)

which is used as best estimate in the following. However, it is often argued that for long term

simulations over centuries and millennia it is sufficient to use the steady state value of T which

can directly be derived from other variables [2, 58]. Therefore for most of the results presented

in chapter 5 the assumption of an instantaneous greenhouse effect is made such that equation

(3.23) holds.

An overview of all estimated parameters and their non-dimensional default values is given

in Section 4.5.
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4.2 Demographic parameters

The dynamics of the human population is governed by equations (3.42) and (3.43) which

model the fertility and mortality of the population in dependence of other model variables.

These equations introduce the parameters p, WP , q0, qT and qP (listed in Table 3.2) which need

to be estimated in order to compute trajectories of the model.

The effect of climate impacts on mortality is not regarded in the context of this thesis so that

qT = 0 holds in the following.

Furthermore the mortality sensitivity to population density is set to zero: qP = 0. This is mo-

tivated by the assumption that the population densities of the scenarios regarded (agricultural,

industrial) are fairly below critical values. The limited availability of resources (biomass and

fossil fuels) guarantees that there is still an upper limit to the population size.

The parameters p, Wp and q0 are estimated by means of a (weighted) least square re-

gression, in which the model functions (3.42) and (3.43) are fitted to available data. The

dependent variables of the regression are the fertility ffert and mortality fmort respectively, for

which data on crude birth and death rates are used. These are available country-wise and

yearly for a period from 1960 until 2013 from the World Bank [11, 24]. The predictor variable

in this case is given by the wellbeing W , for which data on the gross domestic product (GDP)

per capita are used. The World Bank offers country-wise, yearly data on the GDP per capita

based on purchasing power parities1 (PPP) and measured in 2011 international $ 2 for the

period from 1990 until 2014 [33].

The data are shown in Figure 4.1 on linear an logarithmic scales. Each data point corresponds

to an available birth or death rate value for a single year and country in dependence of its GDP

per capita. The data feature quite large variances in both directions. The birth rate is generally

quite high ( 0.04 a−1 H−1) for low GDP per capita (< 5000 $ a−1H−1). This regime is followed

by a regime with decreasing birth rates down to around 0.01 a−1 H−1 for the high-income

countries. The death rates decline fast for low incomes from roughly 0.02 a−1 H−1 to around

0.01 a−1 H−1 at 10000$a−1H−1. Beyond this point the death rates stay more or less on a

constant level or decrease only slowly.

For the least squares regression the data points are weighted according to the population

size of the particular country, for which the values are also retrieved from the World Bank [79].

The resulting estimates for the parameters are given in Table 4.2 as “original model”.

1 The concept of purchasing power parities ensures that the GDP data are comparable between different countries
and currencies. [98]

2 The GDP values are inflation-adjusted to the reference year 2011 which makes the data comparable between
different points in time.
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Figure 4.1: Country-wise yearly data on curde birth (left) and death rates (right). The continuous
curves result from a least squares regression of the model equations (3.42) and (3.43), respectively.
While they reflect basic characteristics of the data, the decrease towards large incomes is too fast.
The fitted curves of the alternative model equations (4.13) and (3.43) (shown as dashed lines) do
better capture the data but introduce additional parameters. For the mortality curves qP = qT = 0
is assumed. The lower panel shows the data and curves on double-logarithmic scales for which
the differing speeds of decrease between the model versions are visible. The modeled increase
of fertility for very low incomes is not reflected by the data but rather motivated from theoretical
evidences.

The fertility and mortality curves for the fitted parameter values are also shown in Figure

4.1) as “original” model. The fertility curve captures the plateau with high birth rates for low

incomes; the decrease for larger incomes appears to be too fast. For very low incomes the model

assumption of a linear increase of fertility with wellbeing is not backed up by the available data.

For this regime the model equation draws its legitimation from ecological theory as discussed

in section 6.3.2. The estimated curve for the mortality dependence also appears to decrease
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too fast for higher income levels.

Table 4.2: Overview of the regressed parameter values of the different demographic models. For
the “original model” ωp =ωq = 1 holds.

parameter estimated value

original model
p [a−1] 0.0342± 0.0004
Wp [$H−1a−1] 1600± 30
q0 [$ H−1a−2] 16.39± 0.24
alternative model
p [a−1] 0.4± 523
Wp [$H−1a−1] 0.1± 231
ωp 0.322± 0.008
q0 [$

ωq H−ωq a−(1+ωq)] 0.0169± 0.0008
ωq 0.080± 0.005

For this reason an alternative model is proposed in order to better capture the decreasing

behavior at higher incomes. In the original model equation (3.53) the decrease of both birth

and death rates for high wellbeing is assumed to be inversely proportional to W . A different

exponent Wω could lead to a slower decrease for large W . The following alternative functional

forms for ffert and fmort introduce such exponents as additional parameters:

f alt
fert =

2pWW
ωp
p

W 1+ωp +W
1+ωp
p

(4.13)

f alt
mort =

q0

Wωq
(4.14)

Here ωp and ωq denote the exponents which set the speed of decrease of birth and death

rates with wellbeing. The original model can be retrieved from these equations by setting

ωp =ωq = 1.

The parameters of these alternative model equations are also estimated via a least squares

regression. The resulting values are given in Table 4.2 while the corresponding curves are

shown in Figure 4.1 as “alternative” model.

The fertility fit of the alternative model does not converge to reasonable parameter values

for p and Wp, which is indicated by the large uncertainty ranges. The estimated value for the

exponent is ωp ≈ 0.32 which means considerably slower decreasing compared to the original

model. Also the mortality curve matches the data better as the speed of the decrease is slower.

The estimated exponent of ωq ≈ 0.08 would mean a by far slower decreasing compared to the

original model.
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Since the original model is able to capture the dependencies in the data at least qualitatively

and the overall model complexity is tried to be kept as low as possible, in the following analysis

the alternative model will not be considered. In more quantitatively oriented studies the

alternative model is worth being considered. A general discussion of an accurate model for the

population dynamics is elaborated in section 6.3.

The values for p, Wp and q0 from the regression analysis give an orientation for the order of

magnitude and the proportions of the model parameters. The following rounded values will be

used subsequently as best estimates for the demographic parameters:

p ≈ 0.04H−1a−1 (4.15)

Wp ≈ 2000$H−1a−1 (4.16)

q0 ≈ 20$H−1a−2 (4.17)
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4.3 Economic parameters

It remains to find estimates for the parameters related to the economic part of the model. For

the agricultural submodel c:G:LATP these are b, yB and wL (see Table 3.2).

The parameter b is introduced in equation (3.40) and quantifies the biomass harvesting

sensitivity to the terrestrial carbon stock L and the human population P. There are barely

any data available which quantify the amount of harvested biomass for the period in time

before 1900. This is particularly unfavorable since the c:G:LATP submodel aims at describing

preindustrial times. Thus one has to be satisfied with restricting the estimation of b to data

past 1900.

The amount of harvested biomass through humans is assessed within the concept of the

Human Appropriation of Net Primary Production (HANPP) [35, 38, 49, 50]. HANPP is a

measure for to which extent the biomass production of the natural ecosystem is altered due to

human activities. HANPP is composed of a part due to land use change (HANPPluc) and a part

due to harvesting (HANPPharv). The latter corresponds approximately to the notion of biomass

use B in the c:G model.

Assessments of the global HANPPharv for the years 1910-2005 can be found in [50] and the

corresponding online resource [51]. The datasets also include estimates of the global population

P for those points in time. For the terrestrial carbon stock a constant value of Lpres = 2480 GtC,

corresponding to the present estimate from the IPCC (see Table 4.1) is assumed for all years.

Rephrasing equation (3.40) and using these data b can be estimated as follows:

b =
B

L
2
5 P

3
5
=

HANPPharv

L
2
5
presP

3
5

(4.18)

The estimates for different years are shown in Figure B.1 in appendix B.1. The arithmetic mean

and the standard deviation of the estimated values are:

b ≈ (5.4± 0.5) · 10−7 GtC3/5 a−1 H−3/5 (4.19)

The available data on HANPPharv can also be used to validate the model equation for the

biomass harvesting (3.40). The model states that B∝ Pπ with πmodel = 0.6. The exponent π

can also be estimated from the data by a least squares regression analysis. This gives a value

of πdata = 0.77± 0.04. Even though the model value lies outside the confidence interval, the

exponents are of comparable size. If one would assume a global economy (N = 1) rather than

a fragmented (N ∝ P) the model term for the biomass use would state B∝ P
4
5 . For this case

the exponent of πmodel = 0.8 lies within the confidence interval of πdata. As the data come
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from a period (past 1900) in which the economy is rather global than fragmented this can be

seen as a validation for the model equations.

The parameter yB (measured in $GtC−1 ) quantifies the global economic output Y per

biomass input B. However, it is introduced for the scenario of hunter-gatherer or agricultural

societies. Thus, when recent data are used for the estimation, the total economic output Y

should be restricted to that of the agricultural sector. The global economic output is identified

with the gross world product (GWP) for which there are data available from the World Bank

for the years 1990-2014 [34].1 It also offers data for the global agricultural sector’s share of

the GWP (sagri) for the years 1995-2013 [1]. The global biomass use is again estimated using

the HANPPharv data from [50] which are available from 1990-2005 in ten-year-periods. From

equation (3.48) follows:

yB =
Y
B
≈

sagri ·GWP

HANPPharv
(4.20)

For the years 1990, 2000 and 2005 there are data on GWP, sagri and HANPP available so that

yB can be calculated (see Figure B.2 in appendix B.1).2 The arithmetic mean and the standard

deviation of the estimated values are:

yB ≈ (2.47± 0.07) · 1011 $GtC−1 = (247± 7)$ tC−1 (4.21)

As the unit of yB indicates, it is basically an average price for biomass. Hence it is instructive

to compare it to actual market prices for biomass. If one takes for example the maize price from

the 2014 Global Food Price Monitor of the FAO [29] of about 200$ per ton and assumes that

the mass share of carbon in maize is about 50 %, one gets a price of 400 $ per ton carbon which

compares very nicely to the estimate of yB. This can be seen as an independent confirmation

of the estimate being of a reasonable order of magnitude.

Instead of yB the model for industrial societies c:G:LAGTPK has the parameter yE which

relates global economic output Y to energy input E. 3 Energy here means primary energy since

1 It is important to note that the economic data which are used for parameter estimations need to be given in the
same monetary units. As the demographic parameters were estimated using GDP data in 2011 international $,
the same reference year is used for the GWP data used here.

2 The agricultural share of the GWP for the year 1990 is estimated to be 5 %, extrapolating the trend from recent
years back into the past.

3 As this scenario is comparable to the present global situation in which the global share of non-biomass renewables
on primary energy use is very low, the economic output Y here does not need to be restricted to the agricultural
sector.
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E, according to equation (3.73), amounts to the total energy content of extracted biomass B

and fossil fuels F . The World Bank offers data on the “primary energy intensity” of the global

economy which is basically the reciprocal value of yE [26]. Averaging the available data from

the years 1990-2012 leads to the following estimate (see Figure B.3 in appendix B.1):

yE ≈ (147± 15)$ GJ−1 (4.22)

Similarly to the estimate of yB, this estimate of yE can be independently checked using current

energy prices or costs. For example, the “levelized cost of electricity” for a conventional coal

power plant amounts to about 100 $ MWh−1 ≈ 28 $ GJ−1 [60]. The production costs for crude

oil lie in a range of about 100 $ per barrel which is equivalent to approximately 16 $ GJ−1 [74].

Even though these values lie rather below the previous estimate of yE , their order of magnitude

is comparable and thus the estimate is reasonable.

The parameters eB and eF indicate the energy density of biomass and fossil fuels, respectively.

According to the definition of the “ton oil equivalent” (toe) one crude oil has an energy

density of about 42 GJ/t. Similar values hold for natural gas (≈ 50 GJ/t) and coal (≈ 30 GJ/t).

Recognizing the typical mass share of carbon of fossil fuels is about 90%, this gives an energy

density with respect to carbon of:

eF ≈ 47GJ tC−1 (4.23)

Typical energy densities of biomass (wood, miscanthus, ...) amount to about GJkg [66]. The

mass share of carbon is typically about 50%, resulting in a value for eB of:

eB ≈ 40GJ tC−1 (4.24)

Due to the very similar values, eB = eF = 40GJ/tC is assumed subsequently.

The capital dynamics introduced with the c:G:LAGTPK submodel (Equation (3.83)) are

parametrized via i, k0 and kT . Climate impacts on physical capital will not be regarded in the

context of this thesis, thus kT = 0 holds.

The World Bank offers a global time series of “gross capital formation” in % of the GWP from

1970-2013 [37] (see Figure B.4 in appendix B.1). This can be identified with the parameter i

in the model. The arithmetic mean and standard deviation from the time series are:

i ≈ (0.244± 0.014)≈ 0.25 (4.25)
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Various estimates of the physical capital depreciation rate k0 can be found in [72, Table II] and

indicate the following value to be reasonable:

k0 ≈ 0.1a−1 (4.26)

With the exception of wL , aB and aF all parameters of the submodels have, at least roughly,

been estimated. Due to a lack of suitable data for estimation these remaining parameters will

not be estimated but varied during bifurcation analyses in the further studies.

4.4 Carbon-related planetary boundaries

As the topology framework presented in section 2.1.6 is applied to the c:G model it is necessary

to define a desirable region of the state space. For the natural sub-system the concept of

planetary boundaries can be deployed as this notion is comparable to that of the desirable

region in the topology framework [43, 83, 93]. The carbon-related boundaries have been used

in combination with the carbon cycle model by Anderies et al. [2] in a recent study by Heck et

al. which conceptually assessed effects of climate engineering on the carbon cycle [41]. For

the topological analyses in this thesis comparable estimates of the desirable region are used.

The climate change boundary is given in terms of atmospheric CO2 concentration and is

estimated to be in the range of 350 − 450ppm CO2. The mean value of 400ppm can be

translated into an absolute atmospheric carbon content of some 840GtC [41]. In terms of

the ratio of the total available pre-industrial carbon this gives the following estimate of the

atmospheric carbon boundary βA:

βA ≈ 0.2 C∗PI (4.27)

The boundary to ocean acidification is defined via the surface ocean saturation state of

aragonite. This measure is related to the carbon content in the surface oceans but cannot be

directly transferred to the model as it lacks necessary chemical processes. Heck et al. estimate

the ocean acidification boundary in terms of absolute maritime carbon content, βM as:

βM ≈ 0.3 C∗PI (4.28)

Since the topological framework is only applied to model versions which assume instantaneous

diffusion and thus M = mA holds according to equation (3.15), the climate change boundary

and the ocean acidification boundary are (coincidentally) transgressed simultaneously because

βM = mβA for the default solubility coefficient m= 1.5.

The land-system change boundary can be related to the amount of carbon in the terrestrial
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systems as it is defined via the area of forested land relative to the original (pre-human)

forest cover. For simplicity forest cover is assumed to be proportional to the carbon stored in

vegetation. Using the values by Ciais et al. given in Figure 2.13 the boundary of 75% can

be translated to the a terrestrial carbon boundary of βL ≈ 0.6 C∗PI. In the topological analyses

presented in chapter 5 a slightly smaller boundary value is assumed:

βL ≈ 0.5 C∗PI (4.29)

This choice is motivated by the practical reason that for these estimates of the boundaries

βL + βA+ βM = C∗PI holds, and hence for the case of instantaneous diffusion all boundaries are

transgressed simultaneously.

One could also try to define socio-economic boundaries, for example on the basis of the

concept of the “safe and just operating space” [81]. These could for instance represent a

minimum amount of calories per capita and day or a maximal tolerable death rate.

4.5 Overview of parameter values and confidences

The following table 4.3 gives an overview of all parameters introduced so far and their best

estimates from available data. Furthermore the estimations are classified according to the

confidence associated with them. The classification is based in part on the relative uncertainty

of the estimates but also more generally on the suitability of the available data used for the

estimation.

Parameters associated with a high confidence will mostly be kept constant during the further

analyses. Those which could not be estimated from data or which feature a high uncertainty

are the primary candidates for variation during bifurcation analyses.
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Table 4.3: Overview of all estimated parameter values. Dimensional parameters can be converted
to corresponding dimensionless values using the formulas given in section 3.5. These values serve
as default if not stated otherwise. The background color classifies the estimates with respect to the
following categories: high confidence ( green ), low confidence ( yellow ), no estimate ( red )

and neglected ( gray ).

parameter unit best estimate default value
(dimensional) (dimensionless)

Σ km2 1.5 · 108 1
C∗PI GtC 4000 1
C∗ GtC 5500 1
a0 a−1 0.0298± 0.0026 3.0
aT km2 a−1 GtC−1 (3.2± 0.6) · 103 11.9
l0 km a−1 GtC−1/2 26.4± 2.4 16.0
lT km3 a−1 GtC−3/2 (1.1± 0.6) · 106 25.0
δ a−1 0.016± 0.005 1
m 1 1.43± 0.02 1.5
g a−1 0.02 2
Ω0 GtC km−2 0 0
ωL 1 0 0
p a−1 0.04 4
Wp $a−1 H−1 2000 1
q0 $a−2 H−1 20 1
qT km2 $a−2 H−1GtC−1 0 0
qP km2a−1H−1 0 0
b GtC3/5 a−1 H−3/5 (5.4± 0.5) · 10−7 1
yB $ GtC−1 (2.47± 0.07) · 1011 0.1
wL $ km2 GtC−1 a−1 H−1 — varied
yE $ GJ−1 147± 15 1
aB GJ5a−5GtC−2$−2H−2 — varied
aF GJ5a−5GtC−2$−2H−2 — varied
eB GJ GtC−1 40 · 109 1
eF GJ GtC−1 40 · 109 1
i 1 0.244± 0.014 0.25
k0 a−1 0.1 10
kT km2 a−1GtC−1 0 0
βL GtC 2000 0.5
βA GtC 800 0.2
βM GtC 1200 0.3



CHAPTER 5

Bifurcation analysis

In this chapter the qualitative asymptotic behavior of the model is investigated. That is, the

equilibria, their stabilities and possible other attractors of the dynamical system are determined.

As far as possible this is done analytically in a most general way for arbitrary parameter values.

If this is not possible, numerical techniques are applied to complement the analytical findings.

The number and types of equilibria and attractors depend on the parameter values. Due to the

relatively large number of free parameters (see Table 4.3) it is not feasible to investigate the

complete parameter space. Instead those parameters for which there is a high confidence in

the estimate are fixed to their best estimates, while those which could only very roughly or not

be estimated are varied during numerical bifurcation analyses.

These investigations are done separately for the different model scenarios presented in

chapter 3, starting from the most simple and ending with the most complex version. All in all

the findings presented in this chapter will lead to a comprehensive picture of the asymptotic

dynamics of the model.

79
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5.1 Planet without humans

Equilibria

The first scenario to be considered is the planet without humans, introduced in section 3.2. If

the albedo effect is neglected, the system is governed by equations (3.11), (3.12) and (3.22).

The equilibrium states are calculated by setting L̇ = Ȧ= Ṫ = 0. For the temperature this gives

the same condition as for the instantaneous greenhouse effect (see equation (3.23)):

T ∗ =
1
Σ

A∗ (5.1)

From the equation for the atmospheric carbon the following equilibrium can be calculated:

A∗ =
C∗PI − L∗

1+m
(5.2)

which corresponds to the condition that the diffusion is in equilibrium (see equation 3.16). Thus

the equilibrium values for the terrestrial carbon L are the same as those of the one-dimensional

c:G:L system, given by equation (3.24).

There is no general analytic solution to this equation, however, it can be shown from the

properties of the photosynthesis and respiration functions, that there is a maximum of three

equilibria for which L̇ = 0 holds. Independent of the parameter values, one equilibrium is

always located at

L∗0 = 0 (5.3)

A∗0 =
C∗PI

1+m
(5.4)

T ∗0 =
C∗PI

Σ(1+m)
. (5.5)

As this corresponds to a planet without vegetation and a high temperature, it is refereed to

as desert state of the planet. If there exist one or more equilibria with L∗ > 0 that with the

highest terrestrial carbon will be referred to as forest state of the planet.

If and how many additional equilibria exist depends on the specific parameter values. The

analytical solutions for certain special cases are shown in Appendix A.2. For the general case

where all parameters are non-zero, the solutions can be found numerically.
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Stabilities

In addition to the number and position of the equilibria, their stability is of interest for a

qualitative analysis. For the application of linear stability analysis one need to determine

the Jacobian JLAT of the three-dimensional c:G:LAT system, evaluate it at the positions of the

equilibria and compute its eigenvalues. The general Jacobian matrix is shown in appendix A.3.

However, there is a simpler way of argumentation to determine the stability. For this the

system is written in the following form:

L̇ = f (L,A,T ) (5.6)

Ȧ= − f (L,A,T ) +δ(C∗PI − L − (1+m)A) (5.7)

Ṫ = g
(︂

1
Σ

A− T
)︂

(5.8)

where f (L,A,T ) = fphot(L,A,T )− fresp(L,T ) according to equation (3.1). If the system is in an

equilibrium (L∗,A∗,T ∗), then f (L∗,A∗,T ∗) = 0 holds. Now the dynamics in the A-T -plane at

fixed L = L∗ in a small neighborhood around the equilibrium is considered, which is given by

the following system:

Ȧ= δ(C∗PI − L∗ − (1+m)A) (5.9)

Ṫ = g
(︂

1
Σ

A− T
)︂

(5.10)

This is a two-dimensional linear system whose Jacobian JAT can easily be computed:

JAT =

(︃
−δ(1+m) 0

g/Σ −g

)︃
(5.11)

As δ, m and g are always positive, the determinant ∆AT = δ(1+m)g is strictly positive and the

trace τAT = −δ(1+m)− g is strictly negative. According to the classification shown in Figure

2.2 the equilibrium is asymptotically stable in the A-T -plane projection. For the determination

of the stabilities of the equilibria it is hence sufficient to limit the analysis to the one-dimensional

c:G:L system, given by equation (3.24). If ∂ L̇
∂ L

⃒⃒⃒
L=L∗

> 0 the equilibrium is unstable, while it is

stable for the opposite case ∂ L̇
∂ L

⃒⃒⃒
L=L∗

< 0.
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Bifurcations via aT and lT

As already mentioned the number, positions and types of equilibria are dependent on the

specific parameter values. Thus an interesting question is how the properties of the equilibria

are affected by variations in different parameters. As a starting point for this bifurcation analysis

serve the default parameters which have been estimated in the previous chapter 4. As indicated

in Table 4.3 the uncertainty on the parameters aT and lT is comparably higher than that on

a0 and l0. Therefore aT and lT are chosen to be varied separately in a bifurcation analysis

while all other parameters are set to their default values. The analysis has been performed

numerically using the Python package PyCont which is part of PyDSTool [19, 20]. The

resulting bifurcation diagrams are shown in Figure 5.1.
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Figure 5.1: Bifurcation diagrams of the c:G:LAT system for a variation in aT (top) and lT (bottom),
respectively. There are three regimes of which each features a different number of equilibria.
At the boundaries of the regimes transcritical (BP1) and fold (LP1) bifurcations occur. For the
best estimates (see Table 4.3) the system is bistable but the uncertainty ranges cover all regimes.
Moreover the system exhibits a hysteresis effect if the parameters are increased above the fold
bifurcation point. All parameters but the bifurcation parameter are set to default values from Table
4.3. Gray shaded regions are unphysical as 0≤ L̂ ≤ 1.
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The parameter space can be subdivided into three qualitatively different regimes. For low

values of either aT or lT there are two equilibria, namely an unstable desert state and a stable

forest state.1 If aT (or lT ) are further increased a transcritical bifurcation occurs in which the

desert state becomes stable and an additional unstable equilibrium “moves” into the region

with L > 0. Thus there is a bistable regime in which both desert and forest state are stable.

When aT (or lT ) are further increased the unstable saddle coalesces with the stable forest

equilibrium in a fold bifurcation, leaving the desert state as only (stable) equilibrium.

Figure 5.1 also shows the estimates of aT and lT from section 4.1 together with their uncer-

tainty ranges. According to the values of these best estimates the carbon cycle is characterized

by a bistable topology. There is, however, a large uncertainty associated with the parameters

such that for lT all three regimes and for aT two regimes lie within the 1σ-uncertainty range.

Hence from the parameter estimates a definitive classification of the topology is not possible.

As the bistable scenario gained from the best estimates is also interesting from a dynamical

systems’ perspective this will serve as the default case throughout the rest of this thesis.

Another interesting feature of the bifurcation diagrams in Figure 5.1 is a hysteresis effect.

Suppose the planet is in the forest state in the bistable regime. If now for instance due to some

large environmental changes in the terrestrial ecosystems the parameter aT (or lT ) would be

effectively increased, the system might change into the regime where the desert state is the

only attractor. Thus the system would move towards the desert state. If now the environmental

conditions would again be altered such that aT (or lT ) is effectively decreased to its previous

value, the system would still remain in the desert state’s basin of attraction. Thus for the same

environmental conditions the forest state cannot be achieved anymore. Only a further decrease

in aT (or lT ) beyond the transcritical bifurcation point would destabilize the desert state and

enable a return to the forest state.

The bifurcation analysis presented above has also been conducted for the parameters a0

and l0 for which there is a higher confidence in the estimates. The corresponding bifurcation

diagrams are shown in appendix B.2 and are qualitatively the same as those presented for aT

and lT .

It would also be possible to study the bifurcations which occur when two parameters are

varied simultaneously. This has been done with the result that no codimension-two bifurcations

occur. This is the expected outcome since the asymptotic dynamics is determined by the one-

dimensional c:G:L equation (3.24) and most codimension-two bifurcations require a minimal

dimension of two. Thus only the codimension-one bifurcation diagrams are shown.

1 In this parameter regime the phase portrait is topologically equivalent to that of the carbon cycle model by
Anderies et al. [2].
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Phase portrait

In order to get a better impression of the dynamics of the system it is instructive to have a look

at the phase portrait. As this is problematic for three-dimensional systems the phase plane is

shown in Figure 5.2 for the c:G:LA system which assumes an instantaneous greenhouse effect.

There are three equilibria which are located at the intersections of the nullclines (the subsets

of the state space for which one derivative vanishes). Of these equilibria the desert state at

L = 0 and the forest state at L ≈ 0.72 C∗PI are asymptotically stable, while there is a saddle

point in between, located at L ≈ 0.54 C∗PI. The stable manifold of the saddle (the trajectories

with approach the saddle for t →∞) divides the phase plane into the basins of attraction of

desert and forest state.
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Figure 5.2: Phase portrait of the c:G:LA system. Gray arrows show the direction of the flow,
thicker lines correspond to faster flow. There are three equilibria located at the intersections of
the nullclines which are indicated by the colored lines. On the black dashed line diffusion is in
equilibrium. The upper right corner is not part of the phase space due to the mass constraint
L+A≤ C∗PI. The star markers correspond to the initial conditions of the trajectories shown in Figure
5.3. The red arrow reflects the actual evolution of the carbon pools from the pre-industrial state
until today. Parameters are set to the default values from Table 4.3.
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Exemplary trajectories and recent evolution

Depending on the initial conditions the state of the system will either converge to the desert state

or to the forest state. Figure 5.3 shows two exemplary trajectories for nearby initial conditions

which are marked in Figure 5.2. In both initial states most of the carbon is stored in the

terrestrial systems (L0 = 0.7 C∗PI) while most of the remaining carbon is airborne (A0 = 0.26 C∗PI

and A0 = 0.27 C∗PI, respectively) and only a small fraction remains in the maritime stock.

Thus the initial behavior is dominated by the diffusion from the atmosphere to the oceans.

Simultaneously the terrestrial carbon stock shrinks as the temperatures (derived from A) are

relatively high. However, after a time of t ≈ 100a the trajectories diverge from each other.

While for the initial state with A0 = 0.26 C∗PI the terrestrial systems are able to accumulate

net carbon ( L̇ > 0) and converge to the forest state, the trajectory starting at A0 = 0.27 C∗PI

ultimately ends in the desert state.

The initial conditions chosen for the exemplary trajectories are somewhat arbitrary and

rather far away from the state of the carbon cycle which has been or is observed. The red

arrow in Figure 5.2 schematically indicates the actual evolution of the carbon pools from the

pre-industrial era until today based on the values given in Table 4.1.1

Two features about the evolution of the recent past are remarkable. Firstly, the actual

evolution of the state of the carbon cycle (red arrow in Figure 5.2) diametrically opposes the

“natural” direction of the flow in the model (gray arrows in 5.2), which one would expect

solely from the unaffected carbon cycle dynamics. This fact can only be explained due to the

considerable interference of humans with the earth system on global scales (as indicated by

the numbers in Figure 2.13). In particular, the emissions of fossil carbon and land use change

push the carbon cycle away from the naturally stable forest state equilibrium. The second

remarkable fact is that, if the human interference is continued in the same way (corresponding

to an extrapolation of the red arrow in Figure 5.2), the carbon cycle might be pushed into

another basin of attraction, possibly leading to an unavoidable collapse of the terrestrial systems,

even if all human activity would be stopped at that point. It should be pointed out, however,

that these statements are just of a qualitative nature and that there is a high uncertainty about

the parameters which generate the topology shown in Figure 5.2.

The findings presented above highlight the human impact on the earth system and hence

emphasize the necessity to include the “human factor” into the model which is the topic of the

next section.

1 The indicated evolution in the c:G:LA phase space should only be regarded as schematic since through the
considerable emissions of fossil carbon the two-dimensional picture of the c:G:LA model is not thoroughly valid
anymore.



86 5 Bifurcation analysis

0 2 4 6 8 10

t̂

0.0

0.2

0.4

0.6

0.8

1.0

M̂
,
Â
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Â

L̂

T̂

0 2 4 6 8 10

t̂

0.0

0.2

0.4

0.6

0.8

1.0

M̂
,
Â
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Figure 5.3: Exemplary trajectories of the c:G:LA system for nearby initial conditions (marked
in Figure 5.2). After a similar initial behavior which is dominated by the diffusion from the
atmosphere to the oceans, the trajectories diverge from each other an run into the forest and
desert state, respectively. Parameters are set to the default values from Table 4.3. Initial conditions:
L0 = 0.7 C∗PI; top: A0 = 0.26 C∗PI; bottom: A0 = 0.27 C∗PI.
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5.2 Agricultural societies

This section focuses on the analysis of the c:G:LATP model which has been introduced in

section 3.3 and includes the global human population P as an additional variable. The scenario

which is described by the model is comparable to hunter-gatherer or agricultural societies. In

the first subsection 5.2.1 the human population P is assumed to be constant over time and

hence modeled as exogenous parameter. In the second part 5.2.2 an endogenously determined,

dynamic population is considered which is more realistic when resources become scarce.

Throughout this section the albedo effect will be neglected and the greenhouse effect is

assumed to be instantaneous since it has been shown that this does not affect the asymptotic

behavior of the system.

5.2.1 With constant population

If the population is assumed to be constant P can be treated as a parameter and the dynamics is

governed by equations (3.50), (3.51) and the algebraic condition (3.23). Thus, the harvesting

of biomass B according to equation (3.40) is the only extension compared to the c:G:LA model.

Bifurcations via P and b

As B∝ L
2
5 the position of the equilibrium at L∗0 = 0 is unaffected by the additional harvesting

term. However, its stability properties might change. Whether there are more equilibria is now

also dependent on the additional parameters b and P. As under the equilibrium conditions

L̇ = Ȧ= 0 the diffusion is in equilibrium (see equation (3.51)) the positions of the equilibria

can still be derived from the roots of the one-dimensional equation (3.24) under consideration

of the harvesting term B:

L̇ = L

[︃(︂
l0 −

lT (C∗PI − L)
Σ(1+m)

)︂√︃
C∗PI − L
Σ(1+m)

−
(︂

a0 +
aT (C∗PI − L)
Σ(1+m)

)︂]︃
− bP

3
5 L

2
5 (5.12)

The shape of this curve is shown in Figure 5.4 for the default parameter values from Table

4.3 and different population levels P. For P = 0 the natural dynamics of the carbon cycle is

reflected. For increasing P the saddle equilibrium and the forest state equilibrium come closer

and coalesce. Above a certain population level the desert state is left as only equilibrium.

The behavior described above corresponds to a fold bifurcation which occurs as P is varied.

The corresponding bifurcation diagram has been calculated numerically and is shown in Figure

5.5 (top).

The critical level Pcc at which the bifurcation occurs can be interpreted as a potential planetary

carrying capacity for a fictitious agricultural society that manages its population so that is

does not grow. Above this population level the planet is not able to sustain a state with an
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Figure 5.4: One-dimensional dynamics of the terrestrial carbon stock L as given by equation (5.12)
for different population levels. While the stable desert state equilibrium at L = 0 is unaffected by
P the stable forest state vanishes for large values of P. The corresponding bifurcation diagram is
shown in Figure 5.5.

intact natural system. For the default parameter estimates the value of Pcc amounts to

Pcc ≈ 300 · 106 H (5.13)

Interestingly, this value lies in the order of magnitude of the actual global population in medieval

which will be discussed in section 6.3.

Note, that at Pcc the equilibrium terrestrial carbon L is still above the planetary boundary

estimated in section 4.4.

Since the parameter b which reflects the harvesting rate of biomass, has qualitatively the

same effect on the dynamics as the population P, a variation of b will also affect the value of

the carrying capacity. Therefore a two-dimensional bifurcation analysis in the b-P-space has

been performed in order to visualize the dependence of the carrying capacity on the harvesting

rate (Figure 5.5 bottom). The boundary of the fold bifurcation divides the parameter space

into two dynamically different regimes. For both low P and b there is a stable equilibrium

with intact natural systems. For large P or b the carrying capacity is exceeded and the state of

the system is attracted by the desert equilibrium with extinguished vegetation. Of course in

that regime the assumption of a constant P becomes absurd which necessitates an endogenous

dynamical modeling of P (see section 5.2.2).
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Figure 5.5: Bifurcation diagrams of the c:G:LAP system with static population. Top: Variation of P
which leads to a fold bifurcation at a critical value of Pcc (LP1). b̂ = 1. Bottom: Two-dimensional
bifurcation diagram in the b-P-space which is divided into two dynamical regimes by the fold
bifurcation curve. The dashed lines serve as orientation and correspond to the population levels
chosen for the topology analysis in Figures 5.6 and B.7. Parameters are set to the default values
from Table 4.3.

Topology of the managed system

The harvesting rate b is modeled as a constant parameter. However, humans might be able to

adjust their harvesting efforts, for instance in response to the scarcity of resources. If locally

several humans will change their behavior this will effectively alter the value of the globally

averaged harvesting rate. Thus one can argue that humans are to some extent able to manage

the dynamics of the system. If additionally a desirable region of the phase space is defined, the

topological concept presented in section 2.1.6 can be applied.

The default dynamics is assumed to be given by equations (3.50) and (3.51) and the default

parameters from Table 4.3. The management option is assumed to lie in the possibility to reduce
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the harvesting effort from the default value b+ to a minimal value of b− = 0.5b+. Thus b

can be “chosen” from the interval b ∈ [b−; b+]. Finally, for the desirable region the planetary

boundaries on L and A, βL and βA, which have been estimated in section 4.4 are used. The

population has been set to a value of P = 500 ·106 H (see also the marking in Figure 5.5) which

lies within the range of estimates for the global population around the year 1500 [52] but

above Pcc such that the default dynamics with b = b+ will lead to extinction of nature and

management is necessary for humans to survive. The topology analysis in the sense of [43]

leads to a partition of the phase space as shown in Figure 5.6.

Figure 5.6: Partitioning of the phase space of the c:G:LAP model with constant population, accord-
ing to the topology classification introduced in section 2.1.6. While the default dynamics (pale blue
arrows) with b̂ = 1 has only one equilibrium at L = 0 the managed flow (dotted dark blue arrows)
with b̂ = 0.5 has an additional attractor within the desired region. Via managing the system can
thus stably stay in the sunny part forever (backwaters W ). The other regions are explained in the
text. Parameters are set to the default values from Table 4.3. P = 500 · 106 H.
The inlet in the upper right corner shows a detail of the phase space partition for a constant
population of P = 250 · 106 H which is shown completely and discussed in Figure B.7 in appendix
B.3.

As it is clear from Figure 5.5 the default flow (with b̂ = 1) for the given population of

P = 500 · 106 H has no equilibrium within the desired region. Therefore there is no shelter
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and thus no upstream region in the phase space (recall Figure 2.10 for definitions of the

topological regions). The managed flow (with b̂ = 0.5) in turn has a stable equilibrium and

a saddle which lie within the sunny part of the phase space. The basin of attraction of the

stable equilibrium of the managed system corresponds to the downstream region. The sunny

part of the downstream is called backwaters W reflecting that one can stay within the desired

region forever but only with appropriate managing. From the dark downstream D(−) one can

reach the backwaters. All trajectories — if managed or not — starting outside the downstream

ultimately converge to the stable desert state equilibrium. The set of initial conditions which

lies in the sunny part but inside the basin of attraction of the desert state form the sunny abyss

Υ (+). Those who start in the dark but cross the sunny region form the dark abyss Υ (−). Finally

that part of the phase space from which the sunny part cannot be reached is called the trench

Θ.

A possible interpretation of these findings is, that agricultural societies of a certain size which

lies above the carrying capacity and does not change over long periods are ultimately damned

to overuse the natural systems unless they decrease their harvesting efforts appropriately.

This could for instance be done by improving agricultural techniques which lead to higher

yields. Similar developments have been observed in the human history in the form of several

agricultural revolutions.

If the human population level lies below the carrying capacity also the default flow features

a stable equilibrium within the desired region. In this case the topological partitioning of the

phase space will look different. An example for a population of P = 250 · 106 H is shown in

appendix B.3.

The population level has been found to be of major importance for the qualitative dynamics

of the system. So far it was prescribed as a constant parameter. This assumption, however,

becomes obviously unrealistic if the resources which nourish the people get scarce. In that case

one would expect the population to shrink, possibly taking pressure from the natural systems

and enabling them to recover. This feedback is accounted for in the following section.
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5.2.2 With dynamic population

The dynamics of the population P is governed by equation (3.53), whereby qP = 0 is assumed

subsequently as the expected population densities P/Σ in the agricultural scenario are far

below critical values.

Equilibria

At P = 0 also Ṗ = 0 holds so that the system is equivalent to the c:G:LAT system. Thus it has

equilibria at the same positions (see sections 5.1 and A.2). However, the asymptotic stability of

these is affected by the additional dimension. In particular all equilibria with L > 0 become

unstable while only the desert state at L = 0 remains stable.

More interesting are those equilibria with P > 0 and L > 0 which will be called coexistence

equilibria as they correspond to situations in which the natural and the human sphere coexist

in a steady state. These equilibria also require the steady state conditions of diffusion (M = mA)

and greenhouse effect (T = A/Σ). Hence the c:G:LATP model features the same equilibria

as c:G:LP. These equilibria lie at the intersections of the nullclines where L̇ = 0 and Ṗ = 0,

respectively.

Setting L̇ = 0 in equation (5.12) for L > 0, solving for P gives:

P(L| L̇ = 0) = b−
5
3 L
(︀

fphot(L)− fresp(L)
)︀ 5

3 (5.14)

For P > 0 equation (3.53) has a root which is obtained at the specific wellbeing level W ∗ at

which birth and death rates are identical:

W ∗ =Wp

√︃
q0

2pWp − q0
for: 2pWp > q0 (5.15)

Thus the equilibrium wellbeing level is solely determined by the demographic parameters p, q0

and Wp. If the inequality condition 2pWp > q0 is violated, death rates are higher than birth

rates for all W and hence no coexistence equilibrium possible. For the default parameter values

estimated in section 4.2 the inequality condition holds.

It is worth noting that the equilibrium wellbeing W ∗ (given in units of $ per capita and year)

can be easily translated into a primary energy supply per capita and year using the parameters

yB and eB. For the estimated parameter values from Table 4.3 this yields:

W ∗eB

yB
≈ 122 GJH−1 a−1 (5.16)

which is equivalent to a daily energy supply of about 80000kcal per person. This number is
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discussed in section 6.3.

The nullclines P(L|Ṗ = 0) can be calculated by setting W ∗ to the general wellbeing function

given by equation (3.56). At this point it is useful to make a distinction of cases:

Case 1: yB = 0 , wellbeing solely given by ecosystem services

In this case the nullcline fulfills W ∗ = wL L/Σ; solving for L gives:

L(L̇ = 0) =
W ∗Σ

wL
=: L∗coex (5.17)

Plugging this into (5.14) gives the coexistence equilibrium population level:

P∗coex =
W ∗Σ

b
5
3 wL

(︀
fphot(L

∗
coex)− fresp(L

∗
coex)

)︀
for: fphot(L

∗
coex)> fresp(L

∗
coex) (5.18)

If the inequality condition is violated there exists no coexistence equilibrium.

Case 2: yB > 0 , per-capita consumption contributes to wellbeing

In this case W ∗ = yB bL
2
5 /P

2
5 +wL L/Σ holds for the nullcline; solving for P gives:

P(L|Ṗ = 0) =
(︂

yB b
W ∗ −wL L/Σ

)︂ 5
2

L (5.19)

Setting equations (5.14) and (5.19) equal and raising the expression to the power of 1
5 gives a

conditional equation for potential coexistence equilibria L∗coex:

[︃(︂
l0 − lT

C∗ − L
Σ(1+m)

)︂√︃
C∗ − L
Σ(1+m)

−
(︂

a0 + aT
C∗ − L
Σ(1+m)

)︂]︃ 1
3 (︁

W ∗ −
wL

Σ
L
)︁ 1

2
= φagri

(5.20)

where: φagri = b
5
6 y

1
2
B

(5.21)

For the general case it is not possible to give analytical expressions for the solutions. From

the functional forms it can, however, be argued that there is a maximum of two coexistence

equilibria (see Appendix A.4 for a graphical proof). Thus, together with the maximal number

of three equilibria of c:G:LAT there is a maximum of five equilibria in the c:G:LATP system.

If the scalar φagri on the right-hand side of equation (5.20) is larger than the maximum of

the left hand side, no coexistence equilibria exist. This means that large values of either of the
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economic parameters b or yB can preclude a coexistence. If wL = 0 holds, W ∗ can be included

in the scalar on the right-hand side, which then, using (5.15) reads as:

̃︀φagri =
b

5
6 y

1
2
B (2pWp − q0)

1
4

q
1
4
0

(5.22)

This shows that large values of the demographic parameters p and Wp also might preclude

coexistence equilibria while large values of q0 renders them possible.

Stabilities

The stabilities and types of the equilibria depend on the actual parameter values. As for the

c:G:LAT model it can be argued that the T and A dimensions do not affect the asymptotic

stabilities of the equilibria and it thus is sufficient to restrict the stability analysis to the c:G:LP

system.

To assess the stability of an equilibrium the eigenvalues of the Jacobian JLP , evaluated at the

equilibrium position, have to be determined. As the system is two-dimensional the stability

can directly be determined from the trace τLP and determinant ∆LP of JLP . An analytical

expression for JLP is given in appendix A.3.

Phase portrait

The further analysis focuses on the planar c:G:LP system as it has the same asymptotic behavior

as the c:G:LATP system. In order to get a first impression of the dynamics Figure 5.7 shows the

phase portrait for the default parameter values from Table 4.3. As there is no estimate of wL it

has been set to zero, which means that wellbeing is simply given by per-capita consumption.

The phase portrait features three equilibria which are all located at the nullcline with P = 0.

These correspond to the three equilibria of the c:G:LA system shown in Figure 5.2. While the

desert state with L = 0 is still an attractor the forest state at L ≈ 0.72 C∗PI has become a saddle

as it is unstable in the P-direction. This accords with the intuition that a small population on a

planet with intact natural system will be growing exponentially and thus the state will veer

away from the equilibrium. Another unstable equilibrium is located at L ≈ 0.54 C∗PI.

The nullclines with Ṗ = 0 and P > 0, given by equation (5.19) is given by a linear slope

for wL = 0. The nullcline with L̇ = 0 and L > 0, given by equation (5.19), has a unimodal

shape. The maximum turning point of this curve corresponds to the carrying capacity Pcc which

is known from the previous section. As the nullclines for P and L do not intersect no steady

coexistence is possible for the default parameter values. In fact all trajectories, independent

of the initial state, will ultimately converge to the desert state. This means that the negative
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Figure 5.7: Phase portrait of the c:G:LP system in the collapse regime. Gray arrows show the
direction of the flow, colored lines correspond to nullclines. At their intersections there are three
equilibria with P = 0 of which only the desert state at L = 0 is asymptotically stable. There are no
coexistence equilibria with P > 0 and L > 0. The star marker corresponds to the initial condition
of the trajectory shown in Figure 5.13. Parameters are set to the default values from Table 4.3;
ŵL = 0; ŷB = 0.1

feedback of population decline for scarce resource levels is not strong enough to enable a

regeneration of the natural system. The subset of the parameter space which features this kind

of asymptotic dynamics is denoted as collapse regime.

Bifurcations via p and b

In the scenario with constant population a lower population level enabled a stable equilibrium

with an intact natural system (see Figure 5.5). Similarly one might ask what effect a reduced

reproduction rate p might have on the dynamics. Therefore a one-dimensional bifurcation

analysis for varying p has been performed (Figure 5.8, top).

For relatively high reproduction rates such as the default value of p̂ = 4 the desert state is

the only attractor of the system. Furthermore two unstable equilibria with P = 0 exist. If p̂ is
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Figure 5.8: Bifurcation diagrams of the c:G:LP system in analogy to Figure 5.5 for constant P.
Top: When the reproduction rate p decreases a fold bifurcation of the coexistence equilibria
(LP1) occurs. At p̂ = 0.5 the coexistence equilibria coalesce with the equilibria with P = 0 in a
transcritical bifurcation. For p̂ ≤ 0.5 (shaded gray) the inequality in equation (5.15) is violated
and no coexistence equilibria can exist. b̂ = 1. Bottom: Two-dimensional bifurcation diagram of
simultaneous variations of p and the harvesting rate b. The fold bifurcation curve (red) divides
the parameter space into two dynamical regimes. The star marker shows the location of the best
parameter estimates. Remaining parameters are set to default values from Table 4.3.

decreased at some critical value a fold bifurcation occurs leading to two coexistence equilibria

with P > 0 of which one is stable and one unstable. p̂ can be further decreased to the point at

which the inequality condition 2pWp > q0 from equation (5.15) is violated (p̂ = 0.5). Exactly

at this point the coexistence equilibria coalesce with the equilibria with P = 0 in a transcritical

bifurcation. Note that for all potential coexistence equilibria the planetary boundary of the

terrestrial carbon stock βL = 0.5 C∗ is not transgressed.

In analogy to the scenario with constant population the harvesting effort b will affect the

dynamics in a similar way. Thus the fold bifurcation point has been continued in the b-direction,
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leading to the two-dimensional bifurcation diagram shown in the lower panel of Figure 5.8.

Again the fold bifurcation boundary divides the parameter space into two dynamic regimes.

For both low values of p and b the system features a stable coexistence state. If either p or

b are increased, at some critical value a fold bifurcation will occur at which the coexistence

equilibria vanish and the desert state is left as only attractor.

Topology of the managed system

In section 5.2.1 the topology of the c:G:LAP system with constant population was investigated

under the assumption that the harvesting effort b is manageable by the humans. For the case

with dynamic population one might, motivated by the reasoning of Malthus (see section 2.2.3),

regard the reproductivity p as management option for the humans. Again the framework

presented in section 2.1.6 can be applied.

The default dynamics is given by the governing equations of c:G:LP and the default parameter

values from Table 4.3. The management option lies in the variation of the parameter p between

the default value p̂+ = 4 and the lower limit p̂− = 1. The desired region is simply given by the

planetary boundary estimate for the terrestrial carbon stock from section 4.4, βL = 0.5 C∗. The

resulting partition of the phase space is shown in Figure 5.9.

The default dynamics (with p̂ = 4) has not stable equilibrium within the desired region so

that there is no shelter and consequently no upstream region. For the managed flow (with

p̂ = 1) there are two coexistence equilibria within the sunny part of the phase space of which

one in asymptotically stable. The basin of attraction of this equilibrium lies completely within

the sunny region and therefore coincides with the backwaters W in terms of the topological

classification. From the remaining part of the sunny region the system will ultimately converge

to the desert state in the dark, hence it is termed sunny abyss Υ+ as there is no chance for

staying in the sun. From the dark region of the phase space it is not possible — with or without

managing — to reach a sunny state so that it is completely classified as trench Θ.

These findings indicate that the collapse which is the ultimate fate of all agricultural societies

for the default parameters, can be prevented if the humans manage to adjust their reproduction

to a lower level. Meanwhile lower birth rates imply a higher equilibrium wellbeing according to

equation (5.15). These findings are in accordance with the hypothetical reasoning of Malthus

[103, Ch. 4]. On the other hand the active management via an “unnatural” low birth rate is

required forever as there is no state from which one can stay in the sun without management.

In a more general topological analysis one could account for several concurrent management

options, for instance via the reproduction rate and the harvesting effort. In that case also a

moderate adjustment of both parameters would lead to a coexistence state (see Figure 5.8).
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Figure 5.9: Partitioning of the phase space of the c:G:LP model, according to the topology clas-
sification introduced in section 2.1.6. While the default flow (pale blue arrows) with p̂ = 4 has
only one equilibrium located at L = 0 the managed flow (dotted dark blue arrows) with p̂ = 1
has an additional stable coexistence equilibrium within the desired region. Its basin of attraction
corresponds to the backwaters W . The remaining trajectories converge to the desert state. They
form the sunny abyss Υ+ if the start inside the sunny part. The dark region coincides with the
trench Θ. Parameters are set to the default values from Table 4.3; ŵL = 0.
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Variation of the economic parameters yB and wL

Apart from the parameters considered so far, the confidence in the estimate of the economic

parameter yB which reflects the productivity of the economy, is relatively low. This is particularly

true as it has been estimated from data of recent times which do not fit to the agricultural

setting of the scenario. However, yB strongly affects the flow of the system as can be seen

from equation (5.19) which shows that the slope of the nullcline is proportional to y
5
2
B . If all

parameters are set to the default values but yB is halved, the phase portrait changes considerably

(Figure 5.10).
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Figure 5.10: Phase portrait of the c:G:LP system in the sustainable regime. Gray arrows show the
direction of the flow, colored lines correspond to nullclines. There are five equilibria of which the
desert state and one coexistence state are asymptotically stable. The star marker corresponds to
the initial condition of the trajectory shown in Figure 5.13. Except for yB the parameters set to the
default values from Table 4.3; ŵL = 0; ŷB = 0.05.

Additionally to the three equilibria located at P = 0 the phase portrait features two coexis-

tence equilibria at the intersections of the nullclines. Thus a reduction of the productivity yB

has a comparable effect to the reduction of the reproduction rate p or the harvesting effort b.

However, yB does not affect the level of the carrying capacity Pcc which b does, according to
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equation (5.14). The subset of the parameter space for which a stable coexistence equilibrium

exists is denoted as sustainable regime.

The topology has also been classified for a default dynamics from the sustainable regime.

The resulting partition of the phase space is shown in Figure B.8 in the appendix.

According to equation (3.56) the parameter wL which values the relative contribution of

ecosystem services to wellbeing, influences the dynamics in a comparable manner as yB.

Therefore these two parameters have been varied during a bifurcation analysis in order to

identify different regimes in the parameter space. The according bifurcation diagram is shown

in Figure 5.11.

For the case wL = 0 it was already clear from the previous considerations that a fold

bifurcation of the coexistence equilibria occurs if one decreases yB below a certain threshold.

The red curve in the bifurcation diagram shows the continuation of this bifurcation point in the

wL direction. As wL increases the critical value for yB decreases, dividing the parameter space

into a regime without coexistence equilibria for large values of yB and wL and a regime, in

which coexistence of nature and humans is possible below the red curve. Figuratively spoken

this means that higher utility which is gathered from consumption and ecosystem services,

destabilizes the system.

Opposed to the two-dimensional bifurcation diagrams presented above (Figures 5.5 and 5.8)

a Bogdanov-Takens bifurcation (BT) occurs on the fold bifurcation curve (see section 2.1.5).

This points divides the fold curve into a branch at which a stable node and a saddle bifurcate,

and a branch at which an unstable node and a saddle coalesce. Furthermore an Andronov-Hopf

bifurcation (AH) curve is adjacent to the BT point. Crossing this curve from right to left (in

decreasing wL-direction) makes the node equilibrium change its stability from unstable to stable.

Thus, below the AH curve and the upper branch of the fold curve an attracting coexistence

state exists. This parameter region corresponds to the sustainable regime introduced above.

It is known from theory a homoclinic bifurcation curve is adjacent to the BT point.1 Between

the homoclinic bifurcation curve and the AH curve the phase portrait features a limit cycle

trajectory. Since the first Lyapunov coefficient in the upper part of the AH curve is positive, the

bifurcation is sub-critical and the limit cycle unstable. Therefore the asymptotic behavior in

the parameter regime between the AH and homoclinic curve is the same as in the remaining

sustainable regime.

In the lower part of the AH curve the system features a Bautin bifurcation (GH) point which

1 As the homoclinic bifurcation is of global type it cannot be detected by the software package used and is hence
only shown schematically in the bifurcation diagram in Figure 5.11.



5.2 Agricultural societies 101

GH
BT

Fold bifurcation
Andronov-Hopf 

hom
oclinic bifurcation

Fold bif.of cycles

BT

GH

Figure 5.11: Codimension-two bifurcation diagram of the c:G:LP model for a simultaneous variation
of the economic parameters yB and wL . The lower panel shows a detail which is indicated in the
upper panel. The bifurcation curves subdivide the parameter space into five topologically non-
equivalent regimes. At their intersections a Bogdanov-Takens (BT) and a Bautin (GH) bifurcation
occur which both have codimension two. For large values of either yB or wL the desert state is the
only attractor, while for low values a stable coexistence equilibrium exists. The narrow parameter
regime between the AH curve and the fold bifurcation of cycles curve features stable (attracting)
limit cycles. Parameters are set to default values from Table 4.3.

also has codimension two. At this point the AH bifurcations change from sub- to super-critical.

If the AH curve is crossed from the left to the right (increasing wL-direction) stable limit cycles

are born. These are possible asymptotic states in a narrow parameter regime which is bounded

by the AH curve and a fold bifurcation of cycles curve which is also adjacent to the GH point.

The unstable and stable limit cycles coalesce in the fold bifurcation of cycles, leaving an unstable
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node to the right-hand side of the bifurcation curve.1 The narrow parameter regime in which

stable limit cycle trajectories are possible is referred to as oscillatory regime. An exemplary

phase portrait for this regime is shown in Figure 5.12.
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Figure 5.12: Phase portrait of the c:G:LP system in the oscillatory regime. Gray arrows show
the direction of the flow, colored lines correspond to nullclines. There are five equilibria (two
of them cannot be distinguished in this graphic) of which only the desert state is asymptotically
stable. There is a stable limit cycle which constitutes another attractor of the system. The large
contribution of ecosystem services to wellbeing creates a strong direct feedback loop between L and
P and hence enables sustained oscillations in which the population changes by a factor of almost
eight with a period of about 2000 years. The star marker corresponds to the initial condition of the
trajectory shown in Figure 5.13. Except for yB parameters are set to the default values from Table
4.3; ŵL = 0.59; ŷB = 0.001.

1 As the fold bifurcation of cycles is of the global type, it cannot be detected with the software used and is hence
indicated only schematically in the bifurcation diagram in Figure 5.11.
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Dynamic regimes and exemplary trajectories

Summing up, the bifurcation curves subdivide the yB-wL-parameter space into five topologically

non-equivalent regions. However, there are only three different combinations of attractors

which motivate the following classification of dynamic regimes:

1. Within the region below the upper branch of the fold bifurcation curve and the AH curve,

there exists the stable desert state equilibrium and a stable coexistence equilibrium. This

regime is called sustainable regime as it allows a sustained coexistence of nature and

humans.

2. The comparatively small region between the super-critical branch of the AH curve and

the curve of fold bifurcations of cycles is denoted oscillatory regime. Here the stable

desert state and a stable limit cycle are the coexisting attractors.

3. In the remaining region of the parameter space the stable desert state is the only attractor

of the system, in which all trajectories will terminate. It is termed collapse regime as it

does not allow a steady coexistence of humans and nature.

Figure 5.13 shows exemplary trajectories from all dynamic regimes identified above. The

initial conditions are marked in the corresponding phase portraits which are shown in Figures

5.7, 5.10 and 5.12. The initial conditions in each case are chosen such that the carbon cycle is

in the forest state equilibrium and only a very small number of humans populates the planet.

The first scenario shows a trajectory from the sustainable regime ( ŷB = 0.05, ŵL = 0). In

the initial phase until t̂ ≈ 5≡ 500a the population curve is S-shaped as it grows first slowly,

then faster and finally again slower in absolute numbers. Simultaneously the terrestrial carbon

stock is continuously decreased from its initial value towards its equilibrium value, due to the

harvesting of biomass. The emissions of carbon into the atmosphere lead to an increase in

atmospheric carbon which causes the temperature to rise as well. After t̂ ≈ 10 there no change

in the variables is visible, meaning that the steady coexistence state is reached.

The second plot shows an example trajectory from the oscillatory regime ( ŷB = 0.001,

ŵL = 0.59). In this case it takes longer for the population to grow because the initial wellbeing

is mainly due to ecosystem services and hence much lower than in the previous scenario. After

t̂ ≈ 15 ≡ 1500a it reaches a peak value which lies above the equilibrium population of the

previous case. As this peak is accompanied by a strong decline in terrestrial carbon L the

wellbeing W drops below its equilibrium value Ŵ ∗ ≈ 0.38, leading to a fast decline of P. After

t̂ ≈ 25 P reaches a minimum. This enables the natural systems to regenerate and L increases

relatively fast towards its forest state level. Due to the large contribution of ecosystem services

to wellbeing, the high level of L causes P to grow again, giving the same situation as in the
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initial phase. This leads to oscillations of all dynamic variables with a period of about ∆ t̂ ≈ 20,

corresponding to 2000 years. For similar parameter values which lie in the sustainable regime

one would also observe oscillations but their amplitude would diminish over time and the

system converge to the stable focus type equilibrium.

The last trajectory shown in Figure 5.13 is representative for the collapse regime ( ŷB = 0.1,

ŵL = 0). As in the sustainable scenario the initial phase is characterized by a high level of

wellbeing and corresponding fast growth of the population. P reaches a peak value after

t̂ ≈ 6≡ 600a which lies far above the maximum population levels of the previous scenarios.

In the following phase P is moderately declining while W is approximately constant, but below

the equilibrium value W ∗. In this phase of high population levels the harvesting of biomass puts

large pressure onto the terrestrial systems as indicated by rapidly decreasing L and increasing

T . After t̂ ≈ 8 the carbon cycle reaches a “tipping point” at which the decrease in L accelerates

while A, M and T rise, leading to a desert-like state after t̂ ≈ 12. With a short delay the

population dies out as well, since their livelihood vanishes with extinction of the terrestrial

carbon stock such that after t̂ ≈ 15 an unpopulated desert planet prevails.
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Figure 5.13: Exemplary trajectories of the c:G:LP model which are representative for all dynamic
regimes introduced in the text. In the upper scenario ( ŷB = 0.05, ŵL = 0) the asymptotic state is
given by a steady coexistence of nature and humans. The second case from the oscillatory regime
( ŷB = 0.001, ŵL = 0.59) features a coexistence which is characterized by oscillations in all variables
with a period of ∆ t̂ ≈ 20 ≡ 2000a; interestingly, W changes the least (Note the different scale
of the time axis in the second plot). The lower scenario is representative for the collapse regime
( ŷB = 0.1, ŵL = 0), in which humans and nature only coexist in a transient phase, but ultimately
the system converges to an unpopulated desert state. The corresponding phase portraits are shown
in Figures 5.7 (collapse), 5.10 (sustainable) and 5.12 (oscillatory).
Initial conditions: L̂0 = 0.72, P̂0 = 10−5. Except for yB and wL the parameters are set to default
values from Table 4.3.
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5.3 Industrial societies

In this section the dynamics of the six-dimensional c:G:LAGTPK model which has been intro-

duced in section 3.4 is analyzed. This version of the copan:GLOBAL model describes industrial

societies and therefore introduces physical capital K as a factor of production. Moreover it

enables the use of fossil fuels which are extracted from a geological carbon stock G.

The first part of this section presents some general analytical findings on the asymptotic

behavior of the system. These will motivate the following sections which focus on the phase

space analysis of the model versions without (c:G:LPK) and with (c:G:LGPK) the use of fossil

fuels.

5.3.1 Equilibria and Stabilities

The dynamics of the system is given by the six ordinary differential equations (3.78) to (3.83).

Potential equilibria require all temporal derivatives to equal zero.

As the equation for the global mean temperature is unchanged, setting Ṫ = 0 gives the same

equilibrium condition as in the previous model versions:

T ∗ =
1
Σ

A∗ (5.23)

The dynamics of the atmospheric carbon stock is also affected by the geological carbon G such

that setting Ȧ= 0 gives the following equilibrium condition:

A∗ =
C∗ − L∗ − G∗

1+m
(5.24)

Equations (5.23) and (5.24) hold true for every potential equilibrium state of the system.

Independent of the parameter values, the remaining equations have the following trivial

solution:

L∗0 = 0 (5.25)

G∗0 = G0 (5.26)

P∗0 = 0 (5.27)

K∗0 = 0 (5.28)

where 0≤ G0 ≤ C∗ is an arbitrary value. Like in the previous scenarios this asymptotic state is

referred to as desert state of the planet.

More interesting are possible coexistence states which require L∗ > 0, P∗ > 0 and K∗ > 0.
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The steady state of the geological carbon stock (Ġ = 0) requires the fossil fuel extraction to be

zero (F = 0). If the fossil sector has a non-zero productivity (aF > 0) a potential coexistence

equilibrium, according to equation (3.86) thus requires:

G∗coex = 0 (5.29)

This means that the economy will use of fossil fuels as long as there are people and capital

available, ultimately leading to a complete exploitation of the fossil resources. The time for

this transient period will in general be infinite though, unless at parameter combinations for

which the equilibrium is non-hyperbolic and the decay to zero is faster than exponential.

Solving the remaining equilibrium conditions for L, P and K is more involved as they depend

on each other. As the asymptotic values of the remaining variables (A∗, G∗, T ∗) are determined

independently (see above), it is sufficient to consider the three-dimensional L-P-K-space. In this

reduced phase space the nullclines at which one of the derivatives vanishes are two-dimensional

surfaces. Setting L̇ equal zero in equation (3.78) and solving for P and K under the condition

L > 0 gives:

P(L,K | L̇ = 0) =
(︂

eB

aB

fnet(L)
L

)︂ 5
2 (aB L2 + aF G∗2)2

K
(5.30)

K(L,P| L̇ = 0) =
(︂

eB

aB

fnet(L)
L

)︂ 5
2 (aB L2 + aF G∗2)2

P
(5.31)

where fnet(L) = (l0 − lT T ∗(L))
√︀

A∗(L)/Σ− (a0 + aT T ∗(L)). The same can be done for Ṗ = 0

in equation (3.82) under the condition P > 0:

P(L,K |Ṗ = 0) =
(︂
(1− i)yE

W ∗ − wL
Σ L

)︂ 5
3 P

3
2

(aB L2 + aF G∗2)
1
2

(5.32)

K(L,P|Ṗ = 0) =
(︂

W ∗ − wL
Σ L

(1− i)yE

)︂ 5
2

(aB L2 + aF G∗2)
1
3 K

2
3 (5.33)

where W ∗ =
√︁

q0
2pWp−q0

. Finally, setting K̇ = 0 in equation (3.83) and demanding K > 0 gives:

P(L,K |K̇ = 0) =
(︂

k0

i yE

)︂ 5
2 K

3
2

(aB L2 + aF G∗2)
1
2

(5.34)

K(L,P|K̇ = 0) =
(︂

i yE

k0

)︂ 5
3

(aB L2 + aF G∗2)
1
3 P

2
3 (5.35)
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The next step is to use these expressions to compute the nullclines where two derivatives vanish.

If (5.31) is substituted for K in (5.34) one finds:

P(L| L̇ = 0∧ K̇ = 0) =
k0e

3
2
B

i yEa
3
2
B

fnet(L)
3
2 (aB L2 + aF G∗2)

L
3
2

(5.36)

Similarly, plugging (5.33) into (5.34) gives:

P(L|Ṗ = 0∧ K̇ = 0) =
i2(1− i)3 y5

E

k2
0

(aB L2 + aF G∗2)
(W ∗ − wL

Σ L)3
(5.37)

Equations (5.36) and (5.37) define curves in the P-L-space at which two derivatives vanish.
Setting them equal gives a conditional equation for L∗coex, similar to equation (5.22) for the
agricultural scenario. Writing out fnet(L) using the expressions (5.23) and (5.24) gives:

[︃(︂
l0 − lT

C∗ − L − G∗

Σ(1+m)

)︂√︃
C∗ − L − G∗

Σ(1+m)
−
(︂

a0 + aT
C∗ − L − G∗

Σ(1+m)

)︂]︃ 3
2 (︁

W ∗ −
wL

Σ
L
)︁3

L−
3
2 = φind

(5.38)

where: φind =
i3(1− i)3 y6

E a
3
2
B

k3
0e

3
2
B

(5.39)

For aF > 0 G∗ = 0 holds while for aF = 0 the geological carbon stock is constant and G∗ = G0.

The solutions of this equation can be determined numerically. Plugging a solution L∗coex into

(5.36) or (5.37) gives a value for P∗coex. Then K∗coex can determined by evaluating (5.31), (5.33)

or (5.35) at the equilibrium values.

Equation (5.38) sets the number of possible coexistence equilibria. These lie at the inter-

sections of the function which is defined by its left-hand side and the constant value on the

right-hand side.

As for the agricultural scenario of the c:G:LATP model it can be shown that there is a maximum

of two coexistence equilibria in the c:G:LAGTPK model (see Appendix A.4 for a graphical

proof). It should be noted that besides these equilibria there might be other attractors in the

system such as limit cycles for certain parameter values, whose existence has not been studied

within the scope of this thesis.

The scalar φind can be viewed as an effective parameter whose variation leads to a fold

bifurcation of the coexistence equilibria at a critical value φind, crit. For values of φind above

this threshold no steady coexistence of nature and humans is possible. Thus large values of the

productivities yE and aB destabilize the system while large depreciation rates k0 and energy
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densities eB stabilize it. The investment ratio i has a non-monotonous influence as it appears

in φ as i3(1− i)3. If wL = 0, W ∗ can be incorporated into the right-hand side of (5.38), giving

a differently defined scalar:

̃︀φind =
i3(1− i)3 y6

E a
3
2
B (2pWp − q0)

3
2

k3
0e

3
2
B q

3
2
0

(5.40)

In analogy to the agricultural scenario this shows that large values of p and Wp might preclude

coexistence equilibria while q0 has a stabilizing effect.

It remains to determine the stabilities of the equilibria. As in the previous cases this can be

done by computing the eigenvalues of the Jacobian of the system, evaluated at the equilibrium

positions. Due to the costly analytical calculations this is not done within this thesis. However,

it turns out that the additional dimensions compared to the c:G:LATP model do not affect the

stabilities qualitatively. That is, the desert state is still a stable equilibrium, independent of the

parameter choices. All other equilibria with P = K = 0 are linear unstable against simultaneous

perturbations in both P and K . The coexistence equilibrium with the lower value of L is always

an (unstable) saddle point. That with the higher value of L is typically stable while it might

become unstable in certain parameter regimes.

The analytical findings presented above show that the asymptotic behavior of the system is

not depending on the dynamics of the geological carbon stock G. In the following two sections,

two scenarios are considered, the first being without and the second with the use of fossil fuels.
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5.3.2 Without fossil fuels

In the previous section all possible equilibrium states of the c:G:LAGTPK model were deter-

mined. In order to get a better impression of the actual dynamics, it is helpful to have a look at

the phase portrait of the system. For now the use of fossil fuels is not considered which can

be achieved by setting aF = 0 as then Ġ = 0 and thus G(t) = G(0) = G0. If furthermore the

greenhouse effect and the diffusion are assumed to be instantaneous processes, the dynamics

takes place in the three-dimensional L-P-K-phase-space (c:G:LPK).

Phase portrait

If all parameters are set to the default values from Table 4.3 and further wL = 0, âB = 60 and

G0 = 0.27 C∗ (as in Table 4.1) are assumed, there is a stable coexistence equilibrium which can

be determined from equation (5.38):

L∗coex ≈ 0.49 C∗

P∗coex ≈ 11.2 · 109 H

K∗coex ≈ 28.3 · 1012 $

(5.41)

This means an average capital per person of (K
P )
∗
coex ≈ 2520$H−1 in the coexistence state.

These values seem to be of a realistic order of magnitude, even though the biomass productivity

âB was more or less arbitrarily chosen.

Figure 5.14 shows two-dimensional sections of the three-dimensional L-P-K-space at the

coexistence equilibrium positions. All phase portraits feature the coexistence equilibrium at the

intersections of the three nullclines derived in section 5.3.1. Furthermore in all cases the two

nullclines of the considered variables have an intersection at the origin. These are, however, no

equilibrium points as the derivative is non-zero in the direction perpendicular to the considered

section.

The section of the P-L-space is qualitatively the same as that of the c:G:LATP model, shown

in Figure 5.10, however, the P-nullcline has a slightly different shape. The section in the

K-L-space looks very similar, which is due to the fact that K and P exhibit qualitatively similar

dynamics. The section in the P-K space reflects the population and capital dynamics at a the

equilibrium value L∗coex. For the fixed resource level only the coexistence state is attracting

while the trajectories are repelled from the origin, at which two nullclines intersect.

The planar sections of the phase portrait only partly reflect the dynamics. Another possibility

to visualize the dynamics is presented in Figure 5.15. It shows trajectories as thin lines in the
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Figure 5.14: Two-dimensional sections of the phase portrait of the c:G:LPK model which describes
capitalistic societies without the use of fossil fuels. The sections are shown at the position of the
coexistence equilibrium given by equation (5.41). Gray arrows represent the flow whereby thicker
lines correspond to faster flow. Colored lines indicate the nullclines according to equations (5.30)
to (5.35). In the P-L-section and K-L-section (upper panels) the dynamics is qualitatively similar
to that of the planar c:G:LP model shown in Figure 5.10. In both cases besides the attracting
coexistence state the origin is attracting the flow. In the P-K-section (lower panel) the coexistence
equilibrium is the only attractor. Note that the flow velocities in the P-K-section are scaled down
by a factor of 10 compared to the upper plots. Thus, at high values of L the dynamics in the
P-K-direction is much faster than in the L-direction which can also be seen in the three-dimensional
visualization in Figure 5.15. Parameters are set to default values from Table 4.3. wL = 0, âB = 60,
âF = 0.
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L-P-K-space which start from randomly drawn initial conditions for the same parameter values

as in Figure 5.14. In the upper panel (with âB = 60) the trajectories concentrate at the two

stable equilibria, the desert state at L∗0 = P∗0 = K∗0 = 0, and the stable coexistence state. The

coloring of the trajectories allows to roughly distinguish the basins of attraction of the two

attractors. The saddle equilibrium which can be seen in the center of the indicated part of the

phase space, lies at the boundary of the two basins of attraction.

As discussed in section 5.3.1 for parameter values which give φ > φcrit, there are no coexis-

tence equilibria. The lower panel of Figure 5.15 shows the three-dimensional phase portrait

for a slightly larger biomass sector productivity of âB = 80. On the first look it is very similar to

the plot in the upper panel as there are also two regions in which the trajectories concentrate.

However, in this case the two regions are not separated but in fact connected via a thin “channel”

through which all trajectories from the part of the phase space with large L run into the part

with low L and ultimately converge to the desert state. This corresponds to the finding from

Figure 5.14 that for large L the dynamics in the P-K-section is much faster than that in the

L-direction. Therefore at large L the trajectories first approach the state where Ṗ = K̇ = 0 and

then the state changes in L-direction.
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Figure 5.15: Three-dimensional visualization of the phase portrait of the c:G:LPK model via
trajectories starting from randomly drawn initial conditions. In the upper plot (âB = 60) there
are two attractors, the desert state at the origin and a coexistence equilibrium given by equation
(5.41). The coloring of the trajectories helps to distinguish the two distinct basins of attraction. The
general geometric structure of the flow in the lower plot (âB = 80) is very similar to the upper case.
However, all trajectories converge to the desert state. Thereby trajectories starting at high L values
run through a channel-like structure which connects the distinct basins of attraction from the upper
plot. The black colored trajectories correspond to those shown in Figure 5.16. Parameters are set
to the default values from Table 4.3. wL = 0, âF = 0.
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Exemplary trajectories

To complete the analysis of this section Figure 5.16 shows two exemplary trajectories for the

same initial conditions but different values of aB, corresponding to the phase portraits in Figure

5.15. As aF = 0 the geological carbon stock is constant over time in both cases. The initial

behavior of the trajectories in both cases is very similar. Both population P and physical capital

K increase fast, reaching a maximum after t̂ ≈ 5, corresponding to 500 years. In the first

case (with âB = 60) P and K show a small overshoot but reach their equilibrium values after

t̂ ≈ 10. For larger t̂ the system is in the stable coexistence state of the natural and the human

spheres. In the second case (with âB = 80) P and K also start to decline after a small overshoot.

However, they keep decreasing slowly over a transient period of ∆ t̂ ≈ 20, in which also the

terrestrial carbon stock diminishes. Over this transient period the wellbeing W is approximately

constant and lies slightly below its equilibrium value W ∗. After t̂ ≈ 25 the decreasing of L, P

and K accelerates and the system collapses into the desert state which it exhibits from t̂ ≈ 35

onwards.

Generally the trajectories of P, K and Y feature a very similar shape. There is no growth of

capital when population declines or vice versa. Thus also the total economic output cannot

grow decoupled from the population or capital dynamics. This can be explained due to the fact

that only labor, physical capital and resources are considered as factors of production while

there is no independent technology variable which would enable a decoupling of population

dynamics and economic growth (see section 6.3 for a further discussion).
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Ŵ

K̂

Ŷ=Ê
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Ŷ

Figure 5.16: Exemplary trajectories of the c:G:LPK model for the same initial conditions but
different biomass sector productivities âB. In the initial phase (until t̂ ≈ 5) the system’s state
evolves very similar with P, K and Y increasing fast, overshooting a maximum and then decreasing
slowly. In the upper case with lower productivity (âB = 60) the system reaches a steady coexistence
state after t̂ ≈ 10 ≡ 1000a. For higher productivity (âB = 80) there is a transient period of
∆ t̂ ≈ 20≡ 2000a with slowly decreasing L, P, K and Y which is followed by a fast collapse into
the final desert state with L = P = K = 0.
Initial conditions: L̂0 = 0.53, Ĝ0 = 0.27, P̂0 = 10−3, K̂0 = 10−5. Parameters are set to default values
from Table 4.3. wL = 0, âF = 0.
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5.3.3 With fossil fuels

After having studied capitalistic societies which do not use fossil fuels in the previous section,

for the following results the usage of both biomass and fossil resource is allowed. The scenario

thus corresponds to the industrial era, the most recent phase in the human history. Technically

this is achieved by choosing a fossil sector productivity aF > 0 in the governing equations of

the c:G:LAGTPK model.

As it was argued in section 5.3.1 the asymptotic state of the system in this case is characterized

by G∗ = 0 (equation (5.26)) because the people will exploit the geological carbon stock as long

as there are fossil fuels available. The productivity parameter aF just determines the speed and

hence the timescale of the process of fossil fuel extraction. It was further shown in section 5.3.1

that the existence of a coexistence equilibrium is independent of the fossil sector productivity

aF as this parameter does not appear in equation (5.38). Thus the dynamics of the geological

carbon stock does not affect the asymptotic behavior qualitatively and can rather be regarded

as a side process whose speed is set by the other variables and the productivity parameter aF .

The carbon which is extracted from the geological pool is emitted into the atmosphere from

where it is being taken up by the ocean via diffusion and the vegetation via photosynthesis.

Hence it is incorporated into the natural carbon cycle, thereby shifting its equilibrium state to

higher absolute values of L, A and M . This means that even though the carbon cycle might rest

in a “forest state” with high L, the increasing amounts of maritime carbon (which is related to

ocean acidification) and atmospheric carbon (which causes climate change) might push the

earth system into an undesirable state.

Fixed total emissions

Even though the dynamic equations predict a complete exploitation of the geological carbon

stock for large times, one might consider the hypothetical case in which the emissions due to

fossil fuels are limited to an accumulated amount denoted by E. The remaining carbon in the

ground Gr is then given by:

Gr = G0 − E (5.42)

Gr can be plugged into equation (5.38) to determine how the position of the potential co-

existence equilibria changes due the emitted carbon amount E. Since the left-hand side of

equation (5.38) is decreasing with E, also the critical right-hand side value φind, crit at which

the coexistence equilibria bifurcate, is lowered. This means that while the existence of the

equilibria is not affected by the use of fossil fuels, a release of geological carbon into the natural

carbon cycle causes the sustainable parameter regime to shrink. This effect is shown for the
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biomass sector productivity aB in the bifurcation diagram in Figure 5.17.
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Figure 5.17: Bifurcation diagram of the c:G:LGPK system for a variation of the total emissions E
and the biomass sector productivity aB. If no biomass is used (aB = 0) coexistence equilibria exist
independent of the total emissions E. The critical value for aB above which the system is in the
collapse regime, however, decreases with the amount of emissions. When the use of fossil fuels is
not prescribed but rather modeled dynamically, E/G0 = 1 holds asymptotically.
Parameters are set to default values from Table 4.3; ŵL = 0; Ĝ0 = 0.27.

Exemplary trajectories

From now on the dynamically determined fossil use is considered again. As the qualitative

asymptotic behavior is unchanged compared to the c:G:LPK model (without use of fossil fuels),

the phase portrait will look qualitatively similar as those shown in Figures 5.14 and 5.15, merely

with shifted equilibria towards larger values of L. Therefore the following analysis focuses on

specific trajectories which are observed for different values of the sectoral productivities aB

and aF .

The upper plot in Figure 5.18 shows the trajectory for a scenarios in which fossil fuels are

the only energy form used by humans. This is achieved by setting âB = 0 and âF = 80 which is

a more or less arbitrary choice. The initial conditions are chosen such that the natural system is

in the forest state equilibrium and the levels of population and capital are very low. In an initial

phase of high wellbeing W the population P and physical capital K increase fast, reaching a

maximum after t̂ ≈ 4≡ 400 a. Meanwhile the geological carbon stock G is steadily decreasing.

After the peak P and K decrease slowly but monotonously, indicating that the wellbeing lies

below the equilibrium value W ∗. While W stays at a constant level, P, K and G are further

decreasing. The speed of this decrease is, however, diminishing; after t̂ ≈ 20 the geological

carbon stock is reduced by a factor of two and after t̂ = 50 there is still roughly a third of

the initial resources available. Even after t̂ = 200 there is a visible amount of fossil fuels left,
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indicating the very slow convergence towards the equilibrium. It is noteworthy that almost

all of the emitted geological carbon is taken up by the terrestrial systems as the maritime and

atmospheric stock only slightly increase. For this reason also the temperature increase due to

the emission of fossil carbon is relatively small.

In the second scenario in Figure 5.18 both biomass and fossil fuels are used by humans

with the biomass sector having a relatively low productivity (âB = 20, âF = 80). Due to the

larger stock size of the terrestrial carbon pool L compared to the geological pool G (L0 > G0)

the shares of both energy sectors are initially almost equal (B̂/Ê ≈ F̂/Ê). In the initial phase,

again, P and K are increasing fast, reaching a peak after t̂ ≈ 4≡ 400 a and then slowly start to

decrease. Meanwhile G declines and the emitted carbon is mainly taken up by the terrestrial

systems such that L grows. Due to the increasing availability of biomass the energy share of

this sector outruns the fossil sector’s share, after t̂ ≈ 20 the B̂/Ê lies above 80 %. After a period

in which P and K were almost constant, these variables start to rise again at a very slow speed.

After t̂ = 200 P and K have reached their equilibrium values which lie above their initial peak.

The biomass share for large t̂ is close to 100 % while the fossil carbon pool is almost completely

exploited.

Finally, in the lower panel of Figure 5.18 a scenario with fossil fuels and relatively high

biomass productivity is considered (âB = 60, âF = 80). As expected in this case the initial

share of the biomass sector of about 75% is much higher than that of the fossil sector. The

collectively higher productivity of the energy sectors compared to the previous scenarios leads

to a faster initial increase in P and K . Like the total economic output Y these variables reach

a peak after t̂ ≈ 4 and stabilize at a plateau around t̂ ≈ 10. Also the terrestrial carbon stock

L stays at a constant level as the losses due to intensive harvesting are compensated by the

uptake of emitted fossil carbon. As the geological carbon pool diminishes, additional pressure is

put on the natural system, indicated by the increasing share of biomass in the energy use. The

emission of carbon into the atmosphere cannot be compensated for by the terrestrial systems

alone so that also the maritime and atmospheric stocks grow, accompanied by an increase in

temperature. At some point (after t̂ ≈ 15) the pressure on the carbon cycle becomes too large to

sustain a coexistence of humans and nature. Over a short period of ∆ t̂ ≈ 5 the natural system

collapses into a desert state with L = 0 and high temperature. As the biomass production

vanishes the economic output and wellbeing also drop, simultaneously with P and K. After

the collapse there are still fossil fuels available such that the remaining people can still exploit

the geological carbon stock to cover their energy demand. From t̂ ≈ 25 the trajectories of the

socio-economic subsystem (P, K , Y and W ) evolve in a similar manner as in the upper scenario
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with aB = 0. However, the state of the natural subsystem is not human-friendly at all.1 As the

terrestrial systems are not able to recover the humans are solely dependent on fossil fuels and

the population will die out with the complete exploitation of the geological carbon at large t̂.

1 Note that accounting for climate impacts via the parameters qT and kT would cause P and K to decrease much
faster in this case. For the trajectories presented here these effects are, however, neglected.
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Ŷ=Ê
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F̂/Ê0.00

0.02

0.04

0.06

0.08

0.10

P̂
,
50
·K̂
,
Ŷ

Figure 5.18: Exemplary trajectories of the c:G:LGPK model for the same initial conditions but
different combinations of the sectoral productivities aB and aF . In all scenarios fossil fuels are used
(âF = 80), leading ultimately to a complete exploitation of the geological carbon stock, independent
of the biomass sector productivity. If no biomass is used (upper panel, âB = 0) the final state is
characterized by an intact nature but no humans surviving. In the second case (with âB = 20) the
system reaches a stable coexistence state with intact nature and non-zero population. If the biomass
productivity is too high (lower panel, âB = 60), after a transient period of coexistence the natural
system will collapse into a desert state and ultimately neither nature nor humans will survive.
Initial conditions: L̂0 = 0.53, Ĝ0 = 0.27, P̂0 = 10−3, K̂0 = 10−5.
Parameters are set to default values from Table 4.3. wL = 0, âF = 0.



CHAPTER 6

Discussion and Outlook

The scope of this thesis was to investigate the asymptotic dynamics of a co-evolutionary model

of globally aggregated variable of the natural and socio-economic sub-systems of the planet.

Furthermore, by the estimation of parameters from real world data, the relevant parameter

regime has been curtailed in order to identify the most likely type of qualitative behavior of the

earth system.

This chapter aims at summarizing and evaluating the main findings presented above and

puts them into a broader context of other research performed so far. As a starting point the

first section 6.1 gives an overview of the key findings achieved in this work. In the following

sections 6.2, 6.3 and 6.4 these and other results are discussed and compared to findings from

the respective disciplines. The final section 6.5 of this chapter discusses the methods used and

gives an outlook on further directions of the model analysis regarding both model components

and techniques.
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6.1 Summary of the main results

The following list gives an overview of the most striking results which have been obtained in

this thesis using the copan:GLOBAL model:

• The study of the carbon cycle model component (c:G:LAT) revealed the three qualitatively

different, parameter-dependent dynamic regimes of which the bistable topology (with

stable desert and forest states) was found to be the most probable. The significant human

influence on global scale earth system dynamics which is missing in this submodel was

however shown to lead to a behavior diametrically opposed to what this component alone

would suggest, which thus necessitates a coevolutionary modeling approach. (Section

5.1)

• For hunter-gatherer and non-capitalistic agricultural societies (c:G:LATP) a planetary

carrying capacity of roughly 300 · 106 humans was estimated in line with estimated

numbers from medieval times. (Section 5.2)

• The capitalistic agricultural scenario (c:G:LATPK) features a state of stably coexisting

humans and nature with a global population of roughly 11 billion humans and a per-capita

capital of roughly 2500$ for a reasonable parametrization. (Section 5.3.2)

• In the industrial scenarios all trajectories which start from rather low levels of population

and capital feature an initial period of exponential growth (of population, capital and

economic output) and which reaches its maximum after roughly 400 years.

• For both the agricultural and industrial scenarios a sustainable parameter regime with

coexisting humans and nature as well as a collapse regime with eventual distinction of

both humans and nature was found. (Sections 5.2.2 and 5.3.1) Those socio-economic

parameters which facilitate sustainability (“stabilizing”) and those which push the system

towards the collapse regime (“destabilizing”) are shown in Table 6.1 below. Most notably,

an otherwise desirable reduction of mortality or increase in agricultural productivity may

ultimately have the adverse effect of favoring a collapse due to overexploitation of the

environment.

• For the agricultural scenario (c:G:LP) an oscillatory parameter regime which features

stable limit cycles was identified. It is enabled by a dominant contribution of ecosystem

services to wellbeing. (Section 5.2.2)

• The asymptotic (though of course not the transient) behavior of the system for the

industrial scenario (c:G:LAGTPK) was found to be independent of the use of fossil fuels.

The associated emissions of carbon were found to be mainly taken up be the terrestrial

systems. (Section 5.3.3)
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Table 6.1: Overview of the dynamic effect of the socio-economic parameters. The denotation of
the parameters can be found in Tables 3.2 and 3.3.

scenario effect parameter

agricultural stabilizing q0
destabilizing p, Wp, b, yB, wL

industrial stabilizing q0, k0, eB
destabilizing p, Wp, yE , aB, wL
bidirectional i

6.2 Carbon cycle dynamics

The parametrization of the carbon cycle dynamics was chosen using recent IPCC data and hence

matches both pre-industrial and present stock sizes of terrestrial, maritime and atmospheric

carbon as well as the major flows between these. There are, however, no data available on

photosynthesis, respiration or diffusion flows for other parts of the L-A-M -space (for instance

for the upper left region of the phase space in Figure 5.2) as the carbon cycle in the past did

not exhibit such “extreme” states. To make things worse, there is a high uncertainty associated

with the IPCC data which is propagated onto the parameter estimates of the model. Putting all

these aspects into consideration one should refrain from regarding the parametrized carbon

cycle component as quantitatively accurate representation of earth system dynamics. These

considerable uncertainties further justify the neglect of the albedo effect throughout the thesis as

it would only alter the dynamics to an extent which is insignificant compared to the uncertainty

which is there anyway.

Despite these issues, the three dynamic regimes (monostable desert, bistable, monostable

forest) which have been identified constitute a common feature of simple ecological or climato-

logical models [97, Ch. 11.3]. The carbon cycle model of Anderies et al. for instance which

is of comparable complexity features the same dynamic regimes, depending on the choice of

parameters [2]. However, the Anderies model has a topology with a globally stable forest state

for the default parameter values. In contrast to this the parametrization according to the IPCC

data suggests a bistable topology to be more probable. It should be emphasized that only the

bistability of the natural sub-system enables the occurrence of the “collapse” regimes which

were identified in the agricultural and industrial scenarios. Even though such collapses have

been observed for several localized human civilizations such as the Mayas or the Polynesians

on Easter Island [15, 25], it is not clear whether global collapses of both nature and human

population are really possible or would be prevented by processes not included in the model.

This point should be kept in mind when interpreting the results found for the coevolutionary

scenarios.
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The dynamics of the carbon cycle becomes more involved when the emissions due to fossil

fuels are accounted for. For the default parametrization it was found that only the position of

the forest state equilibrium is pushed to larger values of the terrestrial carbon stock while its

stability is unaffected (see Figure 5.17 for aB = 0). The altered position of the equilibrium

further indicates that the terrestrial systems are the major sink for the additional carbon while

the amounts in oceans and atmosphere only slightly increase. This feature of the carbon

dynamics appears somewhat questionable if compared with findings that the airborne fraction

of CO2 amounts to about 40 to 60% and that the ocean sink and the terrestrial sink play

comparable roles [30, 56]. While these cited calculations focus on rather short timescales,

also long-term simulations of EMICs indicate larger airborne fractions and corresponding

temperature increases than those found for the copan:GLOBAL model [58]. On the one hand

due to the conceptual and qualitative nature of the model this discrepancy to findings from

climate science could be regarded as only little problematic. On the other hand it might pose

a problem for further studies in which the effect of climate impacts (for instance in form of

increased mortality and depreciation via the parameters qT and kT ) is investigated. Significant

effects through climate damages are only to expect if there is a considerable temperature

increase associated with the emission of fossil carbon. This could potentially be achieved

via a different parametrization of the carbon cycle in which photosynthesis happens on a

slower timescale. It could also be necessary to extend or modify the governing processes of the

carbon cycle model, for instance by adding a deep ocean stock in which carbon from the upper

ocean is accumulated on a relatively long timescale, thereby strengthening the ocean sink for

atmospheric carbon. Yet another explanation for the lacking realism of the model might be

the neglect of other limiting factors for vegetation growth like the availability of water and

nitrogen. Including simplistic water and nitrogen cycle dynamics would potentially weaken the

terrestrial carbon sink and hence favor the increase of atmospheric carbon and global mean

temperatures.
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6.3 Socio-economic dynamics

The socio-economic sub-system of the model is mainly represented by the population dynamics

on the one hand and the Solow-Swan like growth model for the physical capital stock on

the other hand. Population and capital stock feature a qualitatively similar dynamics as their

increase is proportional to the economic output and decrease at a certain rate due to mortality

and depreciation. On the other hand they contribute to the economic output as factors of

production via a Cobb-Douglas production function. This structural similarity of the variables

is reflected by the phase portraits in Figure 5.14 as well as the similar shapes of the trajectories

in Figures 5.16 and 5.18. The dynamics of the agricultural societies (c:G:LP) and capitalistic

societies without the use of fossil fuels (c:G:LPK) hence only differ quantitatively.

6.3.1 Comparison with real world observations and predictions

For the agricultural scenario a planetary carrying capacity of Pcc ≈ 300 · 106 humans was found

which is in perfect agreement with actual estimates of the global population in medieval times

which lies within the range of 200−500·106 humans [52, 75]. This accordance can be valued as

a validation of the parameter estimates. The fact that the default parameter estimates lie within

the collapse regime but no global collapse has been observed historically can be explained in

different ways. As discussed above the parametrization of the carbon cycle which enables the

collapse is subject to high uncertainties. Furthermore the data used to estimate the economic

parameters (yB and b) are dated in the last century and thus from the industrial era. It can be

expected that the productivity of biomass harvesting in former times was considerably lower,

which would result in a higher carrying capacity and the occurrence of a stable coexistence

of humans and nature. Finally another explanation for the absence of a collapse could be the

onset of the industrial revolution and the concurrent use of fossil fuels. These took pressure

from the terrestrial systems as they depict an alternative energy source to biomass. Ironically,

if this explanation was indeed true, it would mean that fossil fuels have helped to prevent a

collapse before leading into another dangerous state.

With the exception of the sectoral productivities (aB and aF ) a reasonable parametrization

of the industrial scenario was less problematic since it corresponds to the recent era of human

history for which economic and demographic data are available. For the scenario without

use of fossil fuels a coexistence state with a population of 11.2 billion humans, a total capital

stock of 28.3 · 1012 $ and a corresponding per-capita capital of 2520$ was found. The total

capital stock value compares well with the estimates found in [10]. If one assumes a total

accumulated emission of fossil carbon of 550GtC= 0.1 C∗ (from pre-industrial times until

today about 375GtC have been emitted; see Figure 2.13) and the same productivity of the

biomass sector, one finds an equilibrium population of 15.2 billion people. Both mentioned
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equilibrium population levels compare well with the UN projection of about 11.2 billion humans

by 2100, when the population growth will be close to zero [108, “medium variant” of 2015

revision]. Moreover, in the industrial scenarios, population and economic output reach their

maximum after t̂ = 4≡ 400 years which nicely matches the time from 1750 (roughly the onset

of industrialization) until 2100 for which the UN project the global population to be maximal

(Figures 5.16 and 5.18). This perfect accordance between modeled values and real world data

underpins the validity of both the model and the parameter estimates.

While the temporal evolution and the quantities of many socio-economic variables fit well to

actual data, some features of the social dynamics are less in line with real world observations.

For both the agricultural and industrial scenario the per-capita consumption (which is in the

model identical to wellbeing if ecosystem services are not regarded) is decreasing in those phases

of population growth and ultimately approaches a steady-state value of Ŵ ∗ ≈ 0.38≡ 760 $ per

person and year, which is solely determined by demographic parameters (Equation 5.15). This

behavior reminds of Malthus’ argument, discussed in section 2.2.3. This observation might

hold true for the agricultural scenario since population and wellbeing levels were indeed found

to be roughly constant from year 0 to 1750 [52, 75]. Also the equilibrium wellbeing lies in

the same order of magnitude as the gross word product (GWP) per capita values of about

470− 620$ which were estimated in [13, 63].1 However, since the onset of the industrial

revolution about 250 years ago, the real GWP per capita has increased substantially (particularly

in the industrialized nations) up to about 7600$ in 2008[63]. This value is already 10 times

larger than the predicted equilibrium value of the model. The increasing levels of wellbeing in

industrial scenarios is not captured by the model dynamics. This can be explained with the

functional forms of the equations which govern the population dynamics as discussed in the

subsequent section 6.3.2.

The equilibrium wellbeing level of W ∗ ≈ 760$ can be translated into a per-capita energy

supply. For the parametrization of the agricultural societies (yB, eB) this yields a number of

about 122GJ per year, while for the industrial parametrization (yE) a per-capita supply of

about 5.2GJ is calculated. As a comparison might serve the per-capita primary energy use

in an agricultural country like Bangladesh which amounted to about 9GJ in 2013 and an

industrialized country like Germany which amounted to about 157 GJ in 2014 [27]. Seemingly,

the numbers of the model scenario are interchanged. For the industrial setting the mismatch can

be explained due to the low equilibrium income level as discussed above. For the agricultural

setting in turn the low equilibrium income level is realistic, but there is a high uncertainty

1 The authors in [13, 63] use 1990 international $ (with purchasing power parities) while the model quantities
are given in 2011 international $ which have a lower value due to inflation.
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associated with the economic parameter yB which is used to translate the income into an

energy supply. Moreover, one also needs to account for the very low conversion efficiencies

from primary biomass energy to usable end energy within the agricultural scenario. These also

lead to a comparably large demand of primary energy.

6.3.2 Demographic modeling approaches

Figure 6.1 shows different models for the dependencies of fertility and mortality on wellbeing

which have been mentioned in the previous chapters (see Equations (2.46), (3.42) and (3.43),

(4.13) and (4.14)). The Malthus model features a single stable equilibrium at low wellbeing.

While it is an aid in explaining the constant levels of population and wellbeing until the

industrialization, more recent data show a completely different dependence (see Figure 4.1).

The fertility and mortality dependencies in copan:GLOBAL are in better agreement with the

recent data for higher incomes. For very low levels of wellbeing no data are available, thus

a similar dependence as in the Malthus model is assumed. This results in a single stable

“Malthusian” equilibrium at low incomes. Equilibria at higher incomes can be excluded such

that ultimately the society finds itself in the “Malthusian trap”. A sustained growth of incomes, an

escape from the trap, which took place in many countries since the onset of the industrialization,

is therefore not observable in the copan:GLOBAL model. The “alternative” model with different

exponents which has been proposed in chapter 4.2 to better capture recent data, potentially

features another equilibrium at higher incomes as shown in the right panel of Figure 6.1. Since

wellbeing is inversely proportional to population this is an unstable equilibrium. Therefore also

the alternative functional forms do not solve this drawback of the model. Moreover it introduces

additional parameters which increase the complexity of the model while the qualitative behavior

remains similar. The functional forms used within this thesis make a compromise between the

theory for low incomes (Malthus), the empirical findings for higher incomes and the striving

for low model complexity.

From a dynamical perspective the stability of the Malthusian equilibrium in the model can be

explained by the fact that wellbeing decreases with increasing population (W ∝ Y /P∝ P−
3
5 ).

Thus, a destabilization of the Malthusian equilibrium would require entities which contribute

to wellbeing without needing to be divided amongst the population, hence being independent

of P. The ecosystem services which have been considered at some points fulfill this property.

Indeed Figure 5.11 shows that a stronger contribution of ecosystem services to wellbeing (large

wL and small yB) destabilizes the Malthusian equilibrium and enables an oscillatory coexistence

for agricultural societies. Moreover the notions of knowledge and technological progress do not

need to be divided since the same ideas can serve many individuals at the same time. It might

also be argued that certain forms of physical capital, for instance infrastructure, contribute to
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Figure 6.1: Comparison of the qualitative dependencies of fertility (green) and mortality (red) on
wellbeing for different models which are discussed in the text. All model versions feature a stable
“Malthusian” equilibrium at low levels of wellbeing. In contrast to the Malthus model the functions
of copan:GLOBAL are in better agreement with data for high incomes from the industrial era. The
more complex alternative model potentially features an additional equilibrium at higher levels of
wellbeing which is, however, dynamically unstable.

wellbeing not only as a factor of production which fosters consumption [14]. Extending the

model by a variable which reflects technological progress or modifying the functional form

of the wellbeing variable might thus improve the realism of the socio-economic dynamics. A

comparable extension would lie in the incorporation of the renewable technology knowledge

stock S which is part of the complete c:G model (see Figure 3.1).

Advanced theories of economic growth are able to explain the “breakout” from the Malthusian

regime into a state of sustained growth [31]. This is indeed explained through technological

progress as well as the accumulation of human capital, which are not explicitly included in

the socio-economic sub-model of copan:GLOBAL. The available economic theories could aid

in developing further versions of the model. Many questions regarding the qualitative effect

of parameters or processes can, however, also be answered with the Solow-Swan like growth

model used for this work.

6.3.3 Stabilizing and destabilizing processes and management options

For both the agricultural and the industrial scenario a parameter regime which enable an

asymptotic coexistence of humans and nature and a collapse regime could be distinguished.

From the derived conditional equations (5.20) and (5.38) for the existence of coexistence

equilibria one can read which parameters push the system towards the collapse regime and

which stabilize it.

Generally an increase in those parameters which positively contribute to economic or popu-

lation growth may be beneficial in the short run but ultimately destabilizes the system. For the
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agricultural scenario these are the biomass harvesting rate b, the economic productivity yB and

the parameters p and Wp which set the fertility of the population. The mortality parameter q0

on the other hand negatively influences the population growth and thus has a stabilizing effect

on the overall dynamics.

For the industrial scenario it should be pointed out that only the biomass sector productivity

aB but not the fossil sector productivity aF determine the asymptotic states of the system.

The energy density eB is beneficial for sustainability. Similar to the mortality parameter

q0, the depreciation k0 has a stabilizing effect as it harms the physical capital as factor of

production. The parameters which account for climate impacts (qT and kT in equations (3.43)

and (3.77)) essentially shift the baseline mortality and depreciation parameters depending on

the temperature. The effective mortality and depreciation will increase with rising temperatures,

thus having a stabilizing effect on the dynamics. Lower temperatures in turn would lead to lower

death rates and depreciation, hence enabling a faster convergence to a potential coexistence

state. Due to this twofold feedback the accounting for climate impacts might potentially result in

the occurrence of periodicity, as observed in [48]. The investment ratio i has a non-monotonous

influence on the critical parameter φ which determines the dynamic regime. φ is maximized if

the economic output is equally shared between the factors population and capital. Preferring

either investments or consumption will in turn decrease φ and hence stabilize the dynamics.

This can be explained due to the fact that the investment ratio of i∗ = 0.5 maximizes the total

economic output.

These findings become particularly momentous if the ability of humans to influence socio-

economic parameters is considered. If the society for instance was to optimize the investment

ratio in order to maximize the economic output, this could potentially cause the system to tip into

a different dynamic regime, eventually leading to a collapse of both nature and society. On the

other hand the ability to manage the socio-economic dynamics via parameters might facilitate

the possibility to stay within a desired region, for example given by planetary boundaries. While

some parameters such as death rate, depreciation rate or energy densities of fuels are rather

natural constants, others might significantly be altered by human actions. An example for a

politically implemented steering of birth rates constitutes the “One-child policy” of China which

was in force from the late 1970s until 2015 [78]. While such measures are highly disputable for

moral reasons and their success debatable [46], they reveal that humanity in principle has the

ability to steer socio-economic development on large scales. Such scenarios have been studied

by applying the topology framework introduced in [43] to the agricultural model version

(Figures 5.6, 5.9, B.7 and B.8). The topology framework moreover provides a meaningful way

to communicate subtle dynamical properties of complex systems in an understandable way to

laymen.
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6.4 Comparison to predator-prey dynamics

A remarkable feature of the dynamics of the agricultural scenario is the occurrence of periodic

trajectories which are present for a small parameter regime in which ecosystem services

dominantly determine wellbeing (Figures 5.11 and 5.13). Within this parameter regime the

governing equations of the c:G:LP system are similar to common models of predator-prey

dynamics. Here the biomass of the terrestrial systems plays the role of the prey which has a

natural growth rate (due to photosynthesis) and is exploited by the predator (due to harvesting)

which is depicted by the human population. The humans in turn reproduce proportional to the

availability of biomass resources and are subject to a natural mortality. The large contribution

of ecosystem services effectively makes the resources non-competitive (in contrast to per-capita

consumption) which enables the appearance of periodicity as explained in section 5.2.2 and

also observed in [15]. Structurally similar equations for predator-prey dynamics also feature

periodic solutions. Most prominent of these is the Lotka-Volterra system for which the cyclic

trajectories are, however, not isolated and hence they are no limit cycles [45]. Thus the Lotka-

Volterra system is structurally unstable. There are modified versions of ecological population

dynamics models though which feature limit cycles comparable to those found for c:G:LP.

6.5 Further directions

This section gives a condensed overview of possible further directions of research on the

copan:GLOBAL model. As discussed above there are some features of both the natural and socio-

economic dynamics which still require fine-tuning of the model equations or the parametrization

in order to better agree with empirical findings. A more realistic representation of the climate

system, for instance by introducing a deep ocean carbon stock or water an nitrogen cycles, would

allow for the study of climate impacts. A more sophisticated growth model could potentially

be achieved by incorporating some knowledge or technology variable into the dynamics, but

on the other hand this would increase the complexity of the model. As long as the study aims

primarily at qualitative understanding rather than quantitative predictions one might want to

stick to the established model version.

So far the only energy sources considered are biomass and fossil fuels. The complete

copan:GLOBAL model described in section 3.1 additionally accounts for the use of renewable

energies, such as solar or wind. As their availability is not constrained by a limited or renewable

resources they potentially introduce a qualitatively different dynamics. Moreover, as a “clean”

energy source which neither causes emissions of carbon into the atmosphere nor puts pressure

on the terrestrial systems, the use of renewables can be expected to facilitate a sustainable

coexistence of nature and humans. The model with inclusion of renewable energies might

hence be used to simulate a transition from the recent unsustainable era into an upcoming era
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of sustainability.

Such a transition towards sustainability might possibly require other social processes than

those (mainly purely economic) accounted for in the model so far. A potential candidate poses

the change of values in the face of emerging threats which might lead to a decrease in fertility

or the deliberate refraining from the use of certain (unsustainable) energy forms.

One assumption which underlies the copan:GLOBAL model is that dominant co-evolutionary

feedbacks in the earth system can be described by globally accumulated variables. On the

other hand several regions of the world differ substantially for instance regarding their climate

or political situation. Such differences could lead to diverse regional evolutions which are

not resolved in coarse grained global variables. A historic example constitutes the “Great

Divergence” between industrial countries and development countries in which even in recent

times agriculture is the predominant economic sector [105]. In a regionalized version of the

model some natural and socio-economic variables (such as terrestrial carbon, population and

physical capital) would be modeled regionally. Regionally varying parameter values and initial

conditions would account for regional differences. The local dynamics would still be coupled

via a common atmosphere which is characterized by a fast mixing of the carbon emissions. From

a dynamical systems perspective this corresponds to a system of indirectly coupled “oscillators”

via a common environment. These might exhibit typical phenomena such as synchronization.

In a next step direct coupling mechanisms such as trade or migration could be integrated into

the regionalized model. These processes could happen on an underlying network topology

leading to other interesting phenomena and closing the gap to related models developed within

the copan group [7, 107]. From an earth science perspective it would be of high interest

which conditions and which parameters determine the “success” of certain regions compared

to others.

The results presented in chapter 5 primarily focus on the asymptotic dynamics of the model.

The discussion of several exemplary trajectories, however, revealed that also the transient

behavior features interesting properties. For instance, the duration of a period of coexistence

preceding a collapse is highly dependent on the parameter values. In particular, the assumptions

of instantaneous greenhouse effect and diffusion were legitimated by the argument that they

do not influence the asymptotic dynamics. The transient behavior might yet be considerably

altered by regarding these processes as they introduce slower timescales which might delay

some feedbacks. Thus, an complementary study of both transient and asymptotic dynamics

would potentially yield more insights into the co-evolutionary earth system.





CHAPTER 7

Conclusion

The broader intent of the present thesis was to investigate the global coevolutionary dynam-

ics of humans and nature on timescales of the Holocene epoch. For this purpose the model

copan:GLOBAL was employed which constitutes a holistic Earth system model describing the

evolution of key quantities of the planetary scale dynamics. Through the balanced represen-

tation of natural and anthropogenic components and the low dimensional complexity the

model strives for bridging a gap in the broader landscape of Earth system models (see Figure

1.2). Thereby it also constitutes a contribution to the scientific challenge of modeling the

Anthropocene which is characterized by highly interwoven and complex connections between

the anthroposphere and the ecosphere [88].

The guiding principle within the design and setup of the model was to combine established

modeling approaches from various disciplines of Earth and social sciences. Hence, the global

economic system is described by a growth model in the style of Solow-Swan which is combined

with the use of resources depicted by different forms of energy. The allocation of the factors of

production to the multiple economic sectors is realized via a general equilibrium assumption.

A demographic model which poses a trade-off between the desired dynamical properties and

the accordance with empirical evidence completes the socio-economic model component. The

representation of the natural Earth system via the global carbon cycle is beneficial as it features

components which are incorporating various parts of the ecosphere such as the atmosphere,

hydrosphere, lithosphere and biosphere. The representation of Earth’s climate via the global

mean surface temperature is sufficient for the purpose of the model since regionally varying

impacts of climate change are not of interest. Altogether the state of the Earth system in

the model is represented by a low number of global quantities and its temporal evolution

prescribed by the dominant processes on a planetary scale which are expressed by simple

133
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functional relationships. Notable processes not included in the current model version include

non-economic social processes, like the evolution and imitation of values and traits, and natural

processes that would constrain vegetation growth, such as a hydrological cycle.

The formulation of the model in terms of ordinary differential equations allows the appli-

cation of mathematical methods from the broad field of dynamical systems theory. Thus, by

emphasizing qualitative techniques such as bifurcation analysis the present work distinguishes

itself from related efforts which rather focus on quantitative results. The design of the model

allows flexibly including or excluding certain variables or processes in order to adapt it to actual

or hypothetical scenarios which have been or might be undergone in the course of Earth’s history.

As a first step of the model investigation appropriate sub-models of the complete model

which correspond to different stages of the socio-cultural evolution of humans were derived.

These comprise the sole natural dynamics of the carbon cycle without interference of humans,

a scenario of hunter-gatherer and agricultural societies and a sub-model reflecting the coevolu-

tionary dynamics in the industrial era. For each of these scenarios which involve the human

factor a fundamental distinction between a sustainable regime and a collapse regime emerged.

This dualism depicts a common feature of ecological, particularly social-ecological systems

and hence constitutes a typical narrative in the broader field of sustainability science. The

emergence of an oscillatory regime in the agricultural scenario is another common feature of

ecological models and was explained by the structural similarity to predator-prey dynamics

and the occurrence of an supercritical Andronov-Hopf bifurcation.

The various dynamic regimes which have been identified result from the existence of different

attractors in dependence of the parameter values. By analytical reasoning and numerical

bifurcation analyses those parameters and related processes could be identified which favor a

collapse, oscillations or sustainability, respectively. Some of these reveal a potential conflict

between goals of human development (reduction of mortality, improvement of productivity)

on the one hand and ecological sustainability on the other hand. The analysis also allowed

the identification of parameters which might potentially be relevant and suited in the context

of deliberate control of Earth system dynamics through humans. In this regard the recently

proposed concept of “topology of sustainable management of dynamical systems with desirable

states” was applied to certain model scenarios which improved the qualitative understanding

of the dynamics and generally allows for a better communicability of subtle system properties.

Beyond these rather qualitative findings a major concern of this thesis was the estimation of

the model parameters based on available real-world data. Thus, the relevant parameter regime

could be curtailed and the further analysis restricted to few parameters which could not or only

unconfidently be estimated. Tying the model dynamics to actual data also facilitated the com-
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parison of characteristic quantities of the model with estimates gained by other means. Most

notably, the modeled planetary carrying capacity for purely agricultural societies and their level

of wellbeing nicely compare to real-world estimates for medieval times. This accordance can

be valued as a way of validation of the model. For the industrial scenario some characteristics

like the duration of the period of fast population growth nicely agree with current observations

and predictions while others like the evolution of per-capita consumption indicate a lack of

quantitative accuracy.

Although the model primarily aims at qualitative insights, the quantitative discrepancies

might aid in the further development of the model. A bunch of possible further directions of

research on the model have been proposed which range from fine-tuning of parameters and

governing equations of both the natural and the socio-economic components to the formulation

of a regionalized version of the model which would potentially reveal additional dynamical

phenomena, in particular many more oscillatory modes.

In summary the results of this thesis exemplary show that the coevolutionary modeling

approach has the potential to significantly contribute to a more holistic and systemic under-

standing of the Earth system. Hence, it enables the identification (though not its precise

localization) of a safe and just operating space for humanity which is an essential challenge

for sustainability science. Through the outbalanced representation of both social and natural

dynamics novel insights can be gained which cannot be found with the established models

which rather focus on either of the mentioned components. In particular, the copan:GLOBAL

model proved to be a flexible tool to qualitatively analyze the major global processes during

different socio-cultural eras of human history and thus depicts a step forward towards a better

understanding of the dynamics of the Earth system in the Holocene and the Anthropocene.
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APPENDIX A

Supplementary Calculations

A.1 Dimensionless formulation of c:G:LATP

The following dimensionless formulation is used for the analysis of the c:G:LATP model given

by equations (3.50) to (3.53). The physical quantities of the model variables involve five

independent physical dimensions (GtC, km, a, H, $). Therefore the number of free parameters

can be reduced by five according to the Buckingham Π-Theorem. The parameters C∗PI, Σ, δ,

Wp and b are chosen as reference parameters which are set to 1. Using these the following

dimensionless variables are defined:

t̂ = δt (A.1)

L̂ =
L

C∗PI
(A.2)

Â=
A

C∗PI
(A.3)

Ĝ =
G

C∗PI
(A.4)

T̂ =
TΣ
C∗PI

(A.5)

P̂ =
P b

5
3

C∗PIδ
5
3

(A.6)

M̂ =
M
C∗PI

(A.7)

B̂ =
B

C∗PIδ
(A.8)

Ŵ =
W
Wp

(A.9)
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Plugging these into the dimensional equations (3.50) to 3.53 leads to the following dimen-

sionless equations:

c:G:LATP dimensionless

˙̂L = L̂
(︁
(l̂0 − l̂T T̂ )

√︀
Â− (â0 + âT T̂ )

)︁
− B̂ (A.10)

˙̂A= −˙̂L +
(︀
M̂ −mÂ

)︀
(A.11)

˙̂T = ĝ
(︀
Â− T̂

)︀
(A.12)

˙̂P = P̂
(︂

2p̂Ŵ
1+ Ŵ 2

−
q̂0 + q̂T T̂

Ŵ
− q̂P P̂

)︂
(A.13)

where: M̂ = 1− L̂ − Â− Ĝ (A.14)

B̂ = L̂
2
5 P̂

3
5 (A.15)

Ŵ = ŷB
B̂
P̂
+ ŵL L̂ (A.16)
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These have now eleven dimensionless instead of sixteen dimensional (except for m) free

parameters. These are defined as follows:

â0 = a0
1
δ

(A.17)

âT = aT
C∗PI

δΣ
(A.18)

l̂0 = l0
C∗

1
2

δΣ
1
2

(A.19)

l̂T = lT
C∗

3
2

δΣ
3
2

(A.20)

ĝ = g
1
δ

(A.21)

p̂ = p
1
δ

(A.22)

q̂0 = q0
1
δWp

(A.23)

q̂T = qT
C∗PI

δΣWp
(A.24)

q̂P = qP
C∗PIδ

2
3

Σb
5
3

(A.25)

ŷB = yB
b

5
3

Wpδ
2
3

(A.26)

ŵL = wL
C∗PI

ΣWp
(A.27)
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A.2 Analytical equilibria of c:G:LAT

The existence of other equilibria of the c:G:LAT model than L∗0 = 0 depends on the specific

values of the parameters a0, aT , l0 and lT . As explained in section 5.1 it is sufficient to solve

the one-dimensional equation (3.24) which has no general analytical solution. Therefore in the

following several special cases are regarded for which analytical expressions for the equilibria

can be found.

Case 1: aT = 0, lT = 0

There is one additional equilibrium located at:

L∗2 = C∗ −
a2

0Σ(1+m)
l2
0

, A∗2 =
a2

0Σ

l2
0

(A.28)

on the additional condition that a0
p

1+m< l0
√︀

C∗/Σ.

Case 2: a0 = 0, lT = 0

There is always one additional equilibrium located at:

L∗2 = C∗, A∗2 = 0 (A.29)

Another potential equilibrium is located at:

L∗3 = C∗ −
l2
0Σ(1+m)

a2
T

, A∗3 =
l2
0Σ

a2
T

(A.30)

This additional a equilibrium exists if l0
p

1+m< aT

√︀
C∗/Σ.

Case 3: aT > 0, lT = 0

There are potentially two additional equilibria located at:

L∗± = C∗ −
l2
0Σ(1+m)

a2
T

[︃
1
2
− ε ±

√︂
1
4
− ε

]︃
where: ε =

a0aT

l2
0

(A.31)

A∗± =
l2
0Σ

a2
T

[︃
1
2
− ε ±

√︂
1
4
− ε

]︃
(A.32)
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L+ and L− are present if the following conditions hold:

4a0aT < l2
0 ∧ l0

p
1+m< 2aT

√︀
C∗/Σ (A.33)

If the first term comes to equality and the second still holds, L+ and L− coalesce to one

equilibrium.

Only L+ but not L− is present under the following conditions:

4a0aT < l2
0 ∧ a0(1+m) + aT C∗/Σ< l0

√︀
C∗(1+m)/Σ (A.34)

Case 4: lT > 0,a0 = 0

As for case 2 there is one additional equilibrium located at:

L∗2 = C∗, A∗2 = 0 (A.35)

There is another potential equilibrium located at:

L∗3 = C∗ −
a2

TΣ(1+m)
l2
T

[︃
1
2
+ κ−

√︂
1
4
+κ

]︃
where: κ=

l0lT

a2
T

(A.36)

A∗3 =
a2

TΣ

l2
T

[︃
1
2
+κ−

√︂
1
4
+ κ

]︃
(A.37)

This equilibrium exists if the inequality l0(1+m)− lT C∗/Σ< aT

√︀
C∗(1+m)/Σ holds.



156 A Supplementary Calculations

A.3 Linear stability analysis of c:G:LAT and c:G:LP

Jacobian of the c:G:LAT system

The Jacobian JLAT of the three-dimensional c:G:LAT system given by equations (3.11), (3.12)

and (3.13) is defined as

JLA =

⎛⎜⎝
∂ L̇
∂ L

∂ L̇
∂ A

∂ L̇
∂ T

∂ Ȧ
∂ L

∂ Ȧ
∂ A

∂ Ȧ
∂ T

∂ Ṫ
∂ L

∂ Ṫ
∂ A

∂ Ṫ
∂ T

⎞⎟⎠ (A.38)

where the derivatives are given as follows:

∂ L̇
∂ L
= l0Σ

− 1
2 A

1
2 − lTΣ

− 1
2 A

1
2 T − a0 − aT T (A.39)

∂ L̇
∂ A
=

1
2

l0Σ
− 1

2 LA−
1
2 −

1
2

lTΣ
− 1

2 LA−
1
2 T (A.40)

∂ L̇
∂ T
= −lTΣ

− 1
2 LA

1
2 (A.41)

∂ Ȧ
∂ L
= −

∂ L̇
∂ L
−δ (A.42)

∂ Ȧ
∂ A
= −

∂ L̇
∂ A
−δ(1+m) (A.43)

∂ Ȧ
∂ T
= −

∂ L̇
∂ T

(A.44)

∂ Ṫ
∂ L
= 0 (A.45)

∂ Ṫ
∂ A
= gΣ−1 (A.46)

∂ Ṫ
∂ T
= −g (A.47)
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Jacobian of the c:G:LP system

The Jacobian JLP of the two-dimensional c:G:LP system given by equations (3.50) and (3.53)

and the algebraic equations (3.23) and (3.16) is defined as

JLP =

(︃
∂ L̇
∂ L

∂ L̇
∂ P

∂ Ṗ
∂ L

∂ Ṗ
∂ P

)︃
(A.48)

where the derivatives are given as follows (qP = 0):

∂ L̇
∂ L
=−

2
5

bL−
3
5 P

3
5 −

L
2

√︃
1

Σ (1+m) (C∗ − L)

(︂
l0 −

lT (C∗ − L)
Σ (1+m)

)︂

− a0 +

√︃
C∗ − L
Σ (1+m)

(︂
l0 −

lT (C∗ − 2L)
Σ (1+m)

)︂
−
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A.4 Graphical proof of the number of coexistence equilibria

Equations (5.20) and (5.38) determine the existence and number of coexistence equilibria of

the c:G:LATP and c:G:LAGTPK model versions, respectively. The subsequent considerations

show that there is a maximum of two solutions to these equations. The argumentation is analog

for both equations.

Due to the fractional exponent the left-hand side of (5.20) and (5.38) is only well-defined if

fphot(L)− fresp(L)≥ 0. This condition is met between the forest type equilibrium L∗high and the

saddle equilibrium L∗low of the c:G:LAT model.1

For the case wL = 0 the left-hand side of the conditional equations only has the roots L∗low

and L∗high and is positive in between. The right-hand side is a positive scalar denoted φ. If

φ lies above the curve defined by the left-hand side, then there are no coexistence equilibria.

Alternatively there are two intersections for smaller φ which correspond to the coexistence

equilibria L∗coex 1/2 (see the green curve in Figure A.1).

For the case wL > 0 the left-hand side features one additional root if L∗low <
W ∗

wL
< L∗high. As

the right-hand side is positive there is again a maximum of two intersections which correspond

to coexistence equilibria L∗coex 1/2 (see the blue curve in Figure A.1).

1 Depending on the carbon cycle parameters the saddle equilibrium L∗low can either lie between 0 and L∗high, or
be exactly zero (see Figure 5.1). For the parameter regime where only the desert state is stable the condition
fphot(L)− fresp(L)≥ 0 does not hold for any L. Thus no coexistence equilibria are possible.
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Figure A.1: The left-hand side of the conditional equation (5.38) for the determination of coex-
istence equilibria L∗coex is shown as green curve (wL = 0) and blue curve (wL > 0), respectively.
The constant right-hand side is shown for two different values of φ. For φ < φcrit there are two
intersections, corresponding to two coexistence equilibria. For φ > φcrit there is no coexistence
solution. The qualitative picture is the same for equation (5.20).
Parameters: G∗ = 0; green curve: wL = 0; blue curve: Ŵ ∗ = 5.8, ŵL = 8.0; red continuous curve:
âB = 20; red dashed curve: âB = 50; remaining parameters are set to the default values from Table
4.3.
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Supplementary Figures

B.1 Time series of the economic parameter estimates
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Figure B.1: Estimates of the biomass harvesting rate b according to equation (4.18) for different
years. The mean and standard deviation are used as best estimate, listed in Table 4.3.
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Figure B.2: Estimates of the parameter yB which relates biomass to monetary units, according to
equation (4.20) for different years. The mean and standard deviation are used as best estimate,
listed in Table 4.3.
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Figure B.3: Estimates of the parameter yE which relates energy to monetary units for different
years. The mean and standard deviation are used as best estimate, listed in Table 4.3.
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Figure B.4: Estimates of the investment ratio i for different years. The mean and standard deviation
are used as best estimate, listed in Table 4.3.
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B.2 Bifurcation diagrams of c:G:LAT for varying a0 and l0
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Figure B.5: Bifurcation diagram of the c:G:LAT system for a variation in a0. Except for a0 the
parameters are chosen as in Table 4.3.
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Figure B.6: Bifurcation diagram of the c:G:LAT system for a variation in l0. Except for l0 the
parameters are chosen as in Table 4.3.
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B.3 Topological classifications for different parameter values

Figure B.7: Partitioning of the phase space of the c:G:LAP model with constant population, ac-
cording to the topology classification introduced in section 2.1.6. In contrast to Figure 5.6 the
population is set to P = 250 · 106 H. In this case both the default and managed dynamics have an
attractor within the desired region. Thus there is an upstream region which is subdivided into a
shelter S in which no management is necessary, a glade G from which one can reach the shelter
through managing and the dark upstream U (−) which is the part of the undesired region from
which one can reach the shelter. The remaining topological regimes are the same as in Figure 5.6
for a higher population level. Parameters are set to the default values from Table 4.3.



166 B Supplementary Figures

Figure B.8: Partitioning of the phase space of the c:G:LP model, according to the topology classifi-
cation introduced in section 2.1.6. In contrast to Figure 5.9 the economic productivity parameter is
set to ŷB = 0.05. In this case both the default and managed dynamics have an attractor within the
desired region. Thus there is an upstream region which is subdivided into a shelter S in which no
management is necessary and a glade G from which one can reach the shelter through managing.
The remaining topological parts are the same as in Figure 5.9 for a value of yB. Parameters are set
to the default values from Table 4.3.
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